Strategies for Implementing HR Predictive Analytics to Reduce Voluntary Turnover in Technology-Based Companies

Authors

  • Sucma Berlian Universitas Muhammadiyah Ponorogo Author
  • Sri Hartono Universitas Muhammadiyah Ponorogo Author

DOI:

https://doi.org/10.62872/zj5w6744

Keywords:

burnout , employee engagement , HR Predictive Analytics, retention strategy, voluntary turnove

Abstract

Voluntary turnover in technology-based organizations has continued to escalate, resulting in operational disruption and significant loss of digital talent. This study aims to explore the role of HR Predictive Analytics in developing retention strategies to reduce voluntary turnover. A qualitative descriptive–exploratory approach was applied using thematic analysis of academic literature and organizational practices related to data-driven human resource management. The findings reveal that the primary drivers of turnover include burnout, career stagnation, low employee engagement, and weak leadership interaction. HR Predictive Analytics serves as a reflective mechanism to identify patterns in employee work experiences that contribute to dissatisfaction and increased resignation risk, enabling organizations to formulate precision-based retention interventions. Recommended analytics-driven retention strategies emphasize workload regulation, structured career development, meaningful job design, and leadership capability enhancement. This study concludes that HR Predictive Analytics supports preventive and sustainable talent stability strategies within the technology industry by aligning predictive insights with targeted retention initiatives.

Downloads

Download data is not yet available.

References

Agustini, A. (2024). Analisis Strategi Retensi Karyawan Untuk Mengurangi Turnover Dan Meningkatkan Loyalitas Karyawan. Nobel Management Review, 5(3), 306-320.

Sahoo, T., Zadoia, A., Sahoo, S., & Sahoo, S. (2024). MODIFICATION OF ISM TO RISM (RATIONAL INTERPRETIVE STRUCTURAL MODELLING) IN THE CONTEXT OF EMPLOYEE RETENTION THROUGH CRM AND PERFORMANCE. Academic Review. https://doi.org/10.32342/2074-5354-2024-2-61-2.

Andriani, R., Ahman, E., & Santoso, B. (2020). Conditional Process Pada Manajemen SDM: Perspektif Polychronicity, Kepuasan Kerja, Engagement Karyawan, Lingkungan Kerja, dan Turnover Intention. Gracias Logis Kreatif.

Džambić, A., Hadziahmetovic, N., Sateeshchandra, N., Chelabi, K., & Fountis, A. (2025). Linking Leadership and Retention: Emotional Exhaustion and Creativity as Mechanisms in the Information Technology Sector. Administrative Sciences. https://doi.org/10.3390/admsci15080309.

Barkhuizen, N., & Gumede, B. (2021). The relationship between talent management, job satisfaction and voluntary turnover intentions of employees in a selected government institution. SA Journal of Human Resource Management. https://doi.org/10.4102/sajhrm.v19i0.1396.

Ekawati, Y. A., & Nasution, S. W. P. (2025). Manajemen Sumber Daya Manusia: Strategi, Praktik, dan Dinamika Organisasi. Yayasan Tri Edukasi Ilmiah.

Judrups, J., Cinks, R., Birzniece, I., & Andersone, I. (2021). Machine learning based solution for predicting voluntary employee turnover in organization. Engineering for Rural Development, 20, 1359-1366.

Saraswati, P., Tanuwijaya, J., & Gunawan, A. (2024). The Influence of HRM, Employee Engagement, and Organizational Commitment on Employee Turnover Intention. Asian Journal of Engineering, Social and Health. https://doi.org/10.46799/ajesh.v3i10.408.

Mahlasela, S., & Chinyamurindi, W. T. (2020). Technology‐related factors and their influence on turnover intentions: A case of government employees in South Africa. The Electronic Journal of Information Systems in Developing Countries, 86(3), e12126.

Chagadama, P., Luamba, P., & Mutamba, P. (2022). Reducing Voluntary Employee Turnover in Small Construction Companies for Long-term Productivity. International Journal of Business and Management Research. https://doi.org/10.37391/ijbmr.100301.

Mulyadi, M., Sumardin, S., Sari, D. P., Sabri, S., & Sudianto, S. (2025). Exploring Employee Retention Strategies in Indonesian Startups: A Qualitative Study of Human Resource Management Practices. Annals of Human Resource Management Research, 5(3), 641-651.

De Oliveira Silva, R., Marques, K., Da Silva Faia, V., & Lavarda, C. (2022). Influence of organizational configurations on startup performance. Revista Contabilidade & Finanças. https://doi.org/10.1590/1808-057x20211415.en.

Puspitasari, S., & Kusmaningtyas, A. (2025). Person-organization fit to reduce employee turnover intention with leader STARA competence as moderation variable. Jurnal Manajemen Maranatha, 24(2), 131-144.

Sahoo, M. (2023). Role of Human Resource Management Practices and HR Analytics in Start-Ups. In Global Trends in Technology Startup Project Development and Management: From Innovation to Startup Creation (pp. 109-118). Cham: Springer International Publishing.

Subyantoro, A., & Suwarto, F. X. (2020). Manajemen Sumber Daya Manusia Strategi. Penerbit Andi.

Velez, N. (2019). Strategies to lower information technology employee voluntary turnover. Walden University.

Waloyo, W., Suwaji, R., Sholihin, A., Hepiyanto, H., & Sabella, R. I. (2024). Revolusi Manajemen SDM: Menerapkan Big Data untuk Efisiensi dan Strategi HR di Era Data-Driven. EKOMA: Jurnal Ekonomi, Manajemen, Akuntansi, 4(1), 2185-2192.

Widiantara, I. G. M. A. B., Sihombing, I. H. H., & Diwyarthi, N. D. M. S. (2025). Pengaruh Work-Life Balance dan Budaya Organisasi terhadap Turnover Intention Karyawan CK Hotel. RIGGS: Journal of Artificial Intelligence and Digital Business, 4(3), 6729-6733.

Yanuarty, R. (2025). Peran Strategic HR Analytics dalam Meningkatkan Efektivitas Pengelolaan Sumber Daya Manusia. Jurnal Ekonomi dan Bisnis, 5(1), 41-49.

Younis, S., Ahsan, A., & Chatteur, F. M. (2023). An employee retention model using organizational network analysis for voluntary turnover. Social Network Analysis and Mining, 13(1), 28.

Younis, S., Ahsan, A., & Chatteur, F. M. (2023). An employee retention model using organizational network analysis for voluntary turnover. Social Network Analysis and Mining, 13(1), 28.

Qin, C., Zhang, L., Cheng, Y., Zha, R., Shen, D., Zhang, Q., Chen, X., Sun, Y., Zhu, C., Zhu, H., & Xiong, H. (2023). A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics. Proceedings of the IEEE, 113, 125-171. https://doi.org/10.1109/jproc.2025.3572744.

Downloads

Published

2025-12-24

Issue

Section

Articles

How to Cite

Strategies for Implementing HR Predictive Analytics to Reduce Voluntary Turnover in Technology-Based Companies. (2025). Maneggio, 2(6), 33-41. https://doi.org/10.62872/zj5w6744

Similar Articles

1-10 of 99

You may also start an advanced similarity search for this article.