Evaluation of the Effectiveness of the Intensive Mathematics Class Program through a Pretest-Posttest Study Using the Expository Method for Low Ability Students
DOI:
https://doi.org/10.62872/v3ckxv52Keywords:
Expository Teaching Method, Intensive Mathematics Class Program, Pretest-Posttest Analysis, Wilcoxon Scored TestAbstract
This study evaluates the effectiveness of the Intensive Mathematics Class Program (IMCP) - an expository teaching intervention designed to mitigate mathematics learning loss among low-achieving 10th-grade students at Sekolah Global Mandiri Cibubur, Indonesia, following by the fact of widespread COVID-19 educational disruptions (affecting 90% of learners globally) and documented declines in national PISA mathematics scores. Using a purposive sampling technique, 18 students with the lowest performance (three from each class) were selected to participate in structured instruction on quadratic equations, assessed through a pretest–posttest design. Results indicated significant improvement, with mean scores increasing from 1.33 (SD = 1.14) to 6.61 (SD = 3.47). Non-parametric tests (Shapiro–Wilk W = 0.806, p = 0.002) confirmed data non-normality and the effectiveness of the intervention, further supported by a large effect size, ES = 0.86. Notably, 17 out of 18 students demonstrated score improvements, while only 1 student showed no improvement. These findings show that systematic expository teaching can effectively bridge learning gaps. The study shows the effect of the IMCP as the strategy for low-achieving students in the post-pandemic context. However, the study’s generalizability is limited by its small sample size and localized setting in Senior High School Global Mandiri Cibubur. In the future, the research recommends to expand participant diversity and sample size.
Downloads
References
Archer, A. L., & Hughes, C. A. (2011). Explicit instruction: Effective and efficient teaching. New York: The Guilford Press.
Connor, C. M., Morrison, F. J., & Petrella, J. N. (2004). Effective reading comprehension instruction: Examining child × instruction interactions. Journal of Educational Psychology, 96(4), 682–698. https://doi.org/10.1037/0022-0663.96.4.682
Corder, G. W., & Foreman, D. I. (2014). Nonparametric statistics: A step-by-step approach (2nd ed.). Hoboken, NJ: Wiley.
Dugard, P., & Todman, J. (2006). Analysis of pre-test-post-test control group designs in educational research. Educational Psychology, 15(2), 181–198. https://doi.org/10.1080/0144341950150207.
Heal, J. (2023, September 21). Brain-based learning: Balancing teacher-led instruction and student-centered learning. Edutopia. https://www.edutopia.org/article/teacher-led-instruction-student-centered-learning
Herrhyanto, N., & Gantini, T. (2021). Analisis data dengan statistika nonparametrik. Bandung: Yrama Widya.
IBM Corporation. (2009). IBM SPSS Statistics for Windows, Version 18.0 [Computer software]. IBM Corp.
Kadir. (2015). Statistika terapan (Edisi 1). Jakarta: Rajawali Pers.
Kartini, D., & Kristiawan, M. (2019). Pengaruh tunjangan profesi dan motivasi kerja terhadap kinerja guru. Kelola: Jurnal Manajemen Pendidikan, 6(1), 25–33. https://doi.org/10.24246/j.jk.2019.v6.i1.p25-33.
Kemendikbudristek. (2023). Hasil PISA Indonesia 2022. https://bskap.kemdikbud.go.id/pisa
Khatun, N. (2021). Applications of normality test in statistical analysis. Open Journal of Statistics, 11(1), 1-10. https://doi.org/10.4236/ojs.2021.111006
Killen, R., & O’Toole, M. (2023). Effective teaching strategies: Lessons from research and practice (8th ed.). Melbourne: Cengage Learning Australia.
Lestari, W. (2017). Pengaruh kemampuan awal matematika dan motivasi belajar terhadap hasil belajar matematika. Jurnal Analisa, 3(1). https://doi.org/10.15575/ja.v3i1.1499.
Lintang. (2025, Maret 20). Mendikdasmen: Pelajar Indonesia mengalami learning loss. Universitas Gadjah Mada. https://ugm.ac.id/id/berita/mendikdasmen-pelajar-indonesia-mengalami-learning-loss.
Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia, 53, 1–14.
Pallant, J. (2020). SPSS survival manual: A step by step guide to data analysis using IBM SPSS (7th ed.). London, England: McGraw-Hill Education.
Sari, C. K., Rejeki, S., Toyib, M., Ningtyas, Y. D. W. K., & Aimin, F. N. (2024, January 17-19). Supporting students' mathematical literacy: A description of the pretest-posttest results from the development of the numeracy module. AIP Conference Proceedings, 2926(1), 020005. https://doi.org/10.1063/5.0183076
Sanjaya, W. (2010). Strategi pembelajaran berorientasi standar proses pendidikan. Jakarta: Kencana.
Siswondo, R., & Agustina, L. (2021). Penerapan strategi pembelajaran ekspositori untuk mencapai tujuan pembelajaran Matematika. Himpunan: Jurnal Ilmiah Mahasiswa Pendidikan Matematika, 1(1), 33–40.
Syaban, M., & Ratnaningrum, E. (2021). Statistika Penelitian. Bandung: Informatika.
Tarkar, P. (2020). Impact of COVID-19 pandemic on education system. International Journal of Advanced Science and Technology, 29(9s), 3812–3814.
Yehezky, H. (2025). Descriptive and inferential analysis for pretest-posttest scores [Dataset and code repository]. GitHub. https://github.com/HendricoYehezky/Desciptive-and-Inferential-Analysis-for-Pretest-Posttest-Scores/tree/main
Zumbo, B. D. (2023). Interval scale. In F. Maggino (Ed.), Encyclopedia of quality of life and well-being research (pp. 3640–3642). Springer. https://doi.org/10.1007/978-3-031-17299-1_1522
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hendrico Yehhezky Nata Atmadja, Rahma Hidayani (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






