Applying AI-Based Adaptive Assessment to Map and Enhance Science Literacy Skills in Generation Z: A Systematic Literature Review
DOI:
https://doi.org/10.62872/gekp4d85Keywords:
adaptive assessment, artificial intelligence, science literacy, generation Z, systematic literature reviewAbstract
Science literacy is a critical 21st-century competency, yet student achievement in this area presents significant challenges globally. This gap is exacerbated by conventional assessment methods that are misaligned with the learning characteristics of the digital-native Generation Z, who expect personalized, interactive, and instantaneous feedback. This study aims to analyze and synthesize the current research landscape on the application of AI-based adaptive assessment to map and enhance the science literacy skills of Generation Z. Employing a Systematic Literature Review (SLR) guided by the PRISMA framework, this study identifies existing theoretical models, platforms, evidence of effectiveness, and implementation challenges. The findings indicate that AI-based adaptive assessment platforms, such as Inq-ITS and ALEKS, effectively measure various science sub-skills and improve learning outcomes. Key features including personalization, interactivity, and immediate feedback closely align with the preferences of Generation Z, thereby enhancing student motivation and engagement. Nevertheless, implementation faces significant challenges related to infrastructure, teachers' pedagogical readiness, and crucial ethical considerations, including data privacy and algorithmic bias. This study concludes that AI-adaptive assessment holds transformative potential, yet its effective and equitable adoption requires addressing existing challenges and future research gaps.
Downloads
References
Akhmetova, A. I., Sovetkanova, D. M., Komekbayeva, L. K., Abdrakhmanov, A. E., Yessenuly, D., & Serikova, O. S. (2025). A systematic review of artificial intelligence in high school STEM education research. Eurasia Journal of Mathematics, Science and Technology Education, 21(4). https://doi.org/10.29333/ejmste/16222
Alfakihuddin, M. L. B., Surahman, E., & Haryani, F. (2022). The Application of Inquiry Intelligent Tutoring System in Biology Practicum. Journal of Education Technology, 6(4), 634–642. https://doi.org/10.23887/jet.v6i4.48466
Ananda, L. J., Simanihuruk, L., Ratno, S., Zati, V. D. A., & Sembiring, M. M. (2023). Caplaire: Inovasi Model Pembelajaran IPA Berbasis Literasi Sains. Jurnal Sekolah, 8(1), 125. https://doi.org/10.24114/js.v8i1.54017
Attard, C., & Holmes, K. (2022). An exploration of teacher and student perceptions of blended learning in four secondary mathematics classrooms. Mathematics Education Research Journal, 34(4), 719–740. https://doi.org/10.1007/s13394-020-00359-2
Bafadal, R., & Rosyid, F. (2024). Memahami Kebutuhan Belajar Generasi Z melalui Asesmen Personal Berbasis Artificial Intelegence. Journal of Innovation and Teacher Professionalism, 3(1), 182–188. https://doi.org/10.17977/um084v3i12025p182-188
Erlangga, Munir, Septem Riza, L., Piantari, E., Junaeti, E., & Seanaldi Permana, I. (2023). Implementation of the Gamification Concept in the Development of a Learning Management System to Improve Students’ Cognitive In Basic Programming Subjects Towards a Smart Learning Environment. ADI Journal on Recent Innovation (AJRI), 5(1), 43–53. https://doi.org/10.34306/ajri.v5i1.902
Firdaus, F. M., Wahidin, W., Ramdani, D., Hernawati, D., & Badriah, L. (2025). Profil Keterampilan Literasi Digital Peserta Didik Dalam Pembelajaran Ipa. SCIENCE : Jurnal Inovasi Pendidikan Matematika Dan IPA, 4(4), 697–707. https://doi.org/10.51878/science.v4i4.4252
Gunsaldi, M. S., Guner, E. G., Uckan, M., & Bati, K. (2025). The Impact of Generative AI Applications on Student Learning Outcomes in Science Education: A Systematic Review. Journal of Education in Science, Environment and Health, 11(3), 196–208. https://doi.org/10.55549/jeseh.840
Halkiopoulos, C., & Gkintoni, E. (2024). Leveraging AI in E-Learning: Personalized Learning and Adaptive Assessment through Cognitive Neuropsychology—A Systematic Analysis. Electronics (Switzerland), 13(18). https://doi.org/10.3390/electronics13183762
Harati, H., Sujo-Montes, L., Tu, C. H., Armfield, S. J. W., & Yen, C. J. (2021). Assessment and learning in knowledge spaces (Aleks) adaptive system impact on students’ perception and self-regulated learning skills. Education Sciences, 11(10). https://doi.org/10.3390/educsci11100603
Hopfenbeck, T. N., Lenkeit, J., El Masri, Y., Cantrell, K., Ryan, J., & Baird, J. A. (2018). Lessons Learned from PISA: A Systematic Review of Peer-Reviewed Articles on the Programme for International Student Assessment. Scandinavian Journal of Educational Research, 62(3), 333–353. https://doi.org/10.1080/00313831.2016.1258726
Jalaludin, N. A., Salim, M. H. M., Rasul, M. S., Amin, A. F. M., & Saari, M. A. (2024). The Impact of Virtual Collaboration Tools on 21st-Century Skills, Scientific Process Skills and Scientific Creativity in STEM. International Journal of Advanced Computer Science and Applications, 15(8), 1340–1347. https://doi.org/10.14569/IJACSA.2024.01508130
Ješková, Z., Lukáč, S., Šnajder, Ľ., Guniš, J., Klein, D., & Kireš, M. (2022). Active Learning in STEM Education with Regard to the Development of Inquiry Skills. Education Sciences, 12(10). https://doi.org/10.3390/educsci12100686
Kotsis, K. T. (2025). Integrating Artificial Intelligence for Science Teaching in High School. LatIA, 3. https://doi.org/10.62486/latia202589
OECD. (2023). PISA 2022 Results (Volume I) : The State of Learning and Equity in Education. In Factsheets: Vol. I. OECD Publishing. https://doi.org/doi.org/10.1787/53f23881-en.
Okoye, K., Hussein, H., Arrona-Palacios, A., Quintero, H. N., Ortega, L. O. P., Sanchez, A. L., Ortiz, E. A., Escamilla, J., & Hosseini, S. (2023). Impact of digital technologies upon teaching and learning in higher education in Latin America: an outlook on the reach, barriers, and bottlenecks. In Education and Information Technologies (Vol. 28, Issue 2). Springer US. https://doi.org/10.1007/s10639-022-11214-1
Papp, T. A. (2017). Gamification Effects on Motivation and Learning: Application to Primary and College Students. International Journal for Cross-Disciplinary Subjects in Education, 8(3), 3193–3201. https://doi.org/10.20533/ijcdse.2042.6364.2017.0428
Patigu, Y. P. W., Rahmah, N., & Zulnuraini, Z. (2024). Literasi Sains dan Digital dalam Pembelajaran IPA. Journal of Education Research, 5(3), 3103–3110. https://doi.org/10.37985/jer.v5i3.1404
Ramadhan, S., Atmazaki, A., Ningsih, A. G., Hayati, Y., Henanggil, M. D. F., Nursaid, N., Rahman, F., & Ghaluh, B. M. (2025). Exploring the Impact of Adaptive Real-Time Quiz Platforms with Differentiated Learning Features on Student Engagement and Learning Outcomes: A Mixed-Methods Approach. International Journal of Information and Education Technology, 15(6), 1261–1276. https://doi.org/10.18178/ijiet.2025.15.6.2329
Villegas-Ch, W., Buenano-Fernandez, D., Navarro, A. M., & Mera-Navarrete, A. (2025). Adaptive intelligent tutoring systems for STEM education: analysis of the learning impact and effectiveness of personalized feedback. Smart Learning Environments, 12(1). https://doi.org/10.1186/s40561-025-00389-y
Yasuda, J. I., Mae, N., Hull, M. M., & Taniguchi, M. A. (2021). Optimizing the length of computerized adaptive testing for the Force Concept Inventory. Physical Review Physics Education Research, 17(1), 10115. https://doi.org/10.1103/PhysRevPhysEducRes.17.010115
Zulfiani, Z., Suwarna, I. P., & Miranto, S. (2018). Science education adaptive learning system as a computer-based science learning with learning style variations. Journal of Baltic Science Education, 17(4), 711–727. https://doi.org/10.33225/jbse/18.17.711
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Gde Wikan Pradnya Dana (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





