The Application of Artificial Intelligence in Industrial Supply Chain Optimization and Its Implications for Business Performance

Authors

  • Arie Wahyu Prananta Universitas Trunojoyo Madura Author
  • Amelia Hayati Universitas Padjadjaran Author

DOI:

https://doi.org/10.62872/02xg5t30

Keywords:

Artificial Intelligence, Business Performance, Industrial Supply Chain

Abstract

The digital transformation occurring in the global industrial landscape has driven the need for more adaptive, efficient, and resilient supply chain systems. Amid increasing market complexity, demand fluctuations, and delivery time pressures, the integration of Artificial Intelligence (AI) technology has become a crucial strategy in addressing these challenges. This study aims to evaluate the strategic role of AI in industrial supply chain optimization and its impact on business performance. Using a qualitative approach using a systematic literature review method, various scientific publications from 2019 to 2024 were analyzed. The study results indicate that AI contributes significantly to demand planning, inventory management, distribution optimization, and data-driven decision-making. Positive impacts include increased operational efficiency, predictive accuracy, delivery reliability, and business productivity. However, implementation challenges remain, such as infrastructure limitations, a lack of expertise, organizational resistance, and regulatory and ethical issues. Therefore, successful AI adoption requires a comprehensive approach, encompassing technological readiness, human resource development, and sustainable data governance. This study recommends the need for a collaborative and inclusive digital transformation roadmap to realize an intelligent and competitive industrial supply chain in the digital economy era.

Downloads

Download data is not yet available.

References

Adi, T. B. (2025). Manajemen Operasional dan Rantai Pasok: Optimalisasi Proses Bisnis dalam Persaingan Global. Takaza Innovatix Labs.

Al-kfairy, M. (2025). Strategic integration of generative AI in organizational settings: Applications, challenges and adoption requirements. IEEE Engineering Management Review.

Alomar, M. A. (2022). Performance optimization of industrial supply chain using artificial intelligence. Computational Intelligence and Neuroscience, 2022(1), 9306265.

Bachtiar, M. (2025). Adopsi Kecerdasan Buatan (AI) dalam Industri Maritim: Peluang, Tantangan, dan Implikasinya terhadap Efisiensi Operasional. Cylinder: Jurnal Ilmiah Teknik Mesin, 11(1).

Dede, D. L., Adityarini, E., & Madiansah, M. A. (2025). Analisis Implementasi Kecerdasan Buatan (Artificial Intelligence) Dalam Optimalisasi Proses Bisnis. Jurnal Sistem Informasi dan Teknologi (SINTEK), 5(1), 90-99.

Dendra, F. G., Amnedya, G. S., Imansuri, F., & Gurning, R. H. (2024, December). PENERAPAN TEKNOLOGI DIGITAL PADA RANTAI PASOK DI ERA INDUSTRI 4.0: STUDI KASUS PADA PERUSAHAAN MULTINASIONAL OLAHRAGA. In Prosiding Seminar Nasional Manajemen Industri dan Rantai Pasok (Vol. 5, No. 1, pp. 14-20).

Gresya, S. A., Rambe, N. A., Adelita, M. G., & Sitompul, F. F. (2024, October). Penerapan Teknologi AI dan Machine Learning dalam Manajemen Rantai Pasokan. In Talenta Conference Series: Energy and Engineering (EE) (Vol. 7, No. 1, pp. 985-990).

Harto, B., Rukmana, A. Y., Subekti, R., Tahir, R., Waty, E., Situru, A. C., & Sepriano, S. (2023). Transformasi bisnis di era digital: Teknologi informasi dalam mendukung transformasi bisnis di era digital. PT. Sonpedia Publishing Indonesia.

Hasibuan, A., Hasibuan, N. F., & Ritonga, R. P. (2025). Optimalisasi manajemen operasional dalam meningkatkan efisiensi produksi di industri manufaktur. Journal Computer Science and Information Technology (JCoInT), 6(1), 269-275.

Madanchian, M., & Taherdoost, H. (2025). Barriers and Enablers of AI adoption in human resource management: a critical analysis of organizational and technological factors. Information, 16(1), 51.

Nabila, K., Komaro, M., & Puspanikan, S. K. (2025). STRATEGI REVOLUSIONER DALAM MANAJEMEN PERSEDIAAN UNTUK OPTIMALISASI RANTAI PASOK. Journal Industrial Engineering and Management (JUST-ME), 6(01), 35-38.

Novita, Y., & Zahra, R. (2024). Penerapan artificial intelligence (AI) untuk meningkatkan efisiensi operasional di perusahaan manufaktur: Studi kasus PT. XYZ. Jurnal manajemen dan Teknologi, 1(1), 11-21.

Rahmawati, A., Amirah, S. N., & Wijaya, N. (2025). Integrasi Kecerdasan Buatan dalam Pendidikan Tinggi Indonesia: Peluang, Tantangan, dan Kerangka Implementasi. Jurnal Teknologi Sistem Informasi, 6(1), 114-126.

Ramadhana, R. Z., & Nasution, M. I. P. (2024). Analisis dampak penerapan teknologi AI pada pengambilan keputusan strategis dalam sistem informasi manajemen. Jurnal Ilmiah Research and Development Student, 2(1), 161-168.

Raza, E., & Komala, A. L. (2020). Manfaat dan dampak digitalisasi logistik di era industri 4.0. Jurnal Logistik Indonesia, 4(1), 49-63.

Risqi, S., Farhan, M., Saputra, R., Defriansyah, D., & Wahyudi, B. (2025). Kajian Literatur Masa Depan Manajemen Rantai Pasok dalam Perspektif Teknik Industri: Tantangan dan Strategi. Journal of Industrial Engineering Innovation, 3(01), 1-10.

Selvia, D. F., Maulina, R., & Rustanti, T. D. (2025). Peningkatkan Efektivitas Produksi dan Optimalisasi Biaya Produksi. Jurnal Manajemen dan Ilmu Administrasi, 1(1), 71-77.

Siska, M., Siregar, I., Saputra, A., Juliana, M., & Afifudin, M. T. (2023). Kecerdasan Buatan dan Big Data dalam Industri Manufaktur: Sebuah Tinjauan Sistematis. Nusantara Technology and Engineering Review, 1(1), 41-53.

Susilo, R. F. N., & Athallah, S. B. F. (2023). Penggunaan Artificial Intelligence (AI) dalam Membangun Sistem Pangan Berkelanjutan di Indonesia. Jurnal Imagine, 3(2), 104-116.

Downloads

Published

2025-08-22

How to Cite

The Application of Artificial Intelligence in Industrial Supply Chain Optimization and Its Implications for Business Performance. (2025). Journal of Renewable Engineering, 2(4), 1-8. https://doi.org/10.62872/02xg5t30