Analysis of Order Data Customer Segmentation in Logistics Companies Using K-Medoids and DBSCAN Algorithms

Authors

  • Mujiono Sadikin Program Studi Informatika Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya Author
  • Nanda Azvita Program Studi Informatika Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya Author

DOI:

https://doi.org/10.62872/d6hbsb69

Keywords:

Customer Segmentation, K-Medoids, DBSCAN, Data Mining, Logistics

Abstract

The development of the logistics industry makes the use of customer data to understand market behavior and needs increasingly important. This study aims to segment customers based on logistics company order data using the K-Medoids algorithm and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). This approach is used to identify customer groups with similar characteristics to support more effective marketing and service strategies. This study uses 12,000 customer order data entries from the past year, with variables including order, cost, and receiving location. The data is processed through preprocessing stages (cleaning, transformation, and normalization) before being applied to two clustering models. The analysis results show that the K-Medoids algorithm produces a Silhouette Score of 0.3559, while DBSCAN obtained a score of 0.3233. These values ​​indicate that K-Medoids has more compact and well-separated clusters than DBSCAN. Thus, the K-Medoids method is more effective in segmenting customers to support strategic decisions of logistics companies.

Downloads

Download data is not yet available.

References

Abbasimehr, H., & Shabani, M. (2021). A new methodology for customer behavior analysis using time series clustering: A case study on a bank’s customers. Kybernetes, 50(2), 221–242. https://doi.org/10.1108/K-09-2018-0506

Agustin, E. W., Uthami, K., Ulfa, A. I., Efrizoni, L., & Rahmaddeni, R. (2025). Optimization of Customer Segmentation in the Retail Industry Using the K-Medoid Algorithm. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(3), 766–775. https://doi.org/10.57152/malcom.v5i3.1977

Ali, M., Jones, M. W., Xie, X., & Williams, M. (2019). TimeCluster: Dimension reduction applied to temporal data for visual analytics. The Visual Computer, 35(6–8), 1013–1026. https://doi.org/10.1007/s00371-019-01673-y

Anjara, F. (2025). Analisis Visualisasi Data untuk Mendukung Pengambilan Keputusan Bisnis pada UMKM Sajisaja Menggunakan Tableau. Ekopedia: Jurnal Ilmiah Ekonomi, 1(3), 1532–1539. https://doi.org/10.63822/c07wwq45

Aulia, R., Julianti, N., Putri, S. F., Efrizoni, L., & Deni, R. (2025). Optimalisasi Pengelompokan Gangguan Kecemasan dalam Mendukung Tujuan Pembangunan Berkelanjutan Menggunakan Algoritma K-Means dan K-Medoids. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 12(2). https://doi.org/10.35957/jatisi.v12i2.11495

Azzahra, Y. A., & Akbar, Y. (2024). Komparasi Penerapan Algoritma C4.5 dan Naïve Bayes untuk Ketepatan Waktu Pengiriman Barang Pada PT. Rtrans Logistik Artamandiri. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 5(3), 2768–2780. https://doi.org/10.35870/jimik.v5i3.1003

Dery Shadani & Muhammad Irwan Padli Nasution. (2024). Optimalisasi Pengelolaan Informasi Data Untuk Peningkatan Kualitas Layanan Di Era Digital. Journal Of Informatics And Busisnes, 2(1), 47–51. https://doi.org/10.47233/jibs.v2i1.995

Desai, P., Karthik, P., Loganathan, D., Preethi, S., & Bharani, B. R. (2025). Different data cleaning techniques and normalization techniques with focus on current normalization techniques: A study. In T. Sengodan, S. Misra, & M. M, Advances in Electrical and Computer Technologies (1st ed., pp. 332–349). CRC Press. https://doi.org/10.1201/9781003515470-46

Firmansyah, M. I., Kustiyahningsih, Y., Rahmanita, E., Abidin, M. S., & Satoto, B. D. (2025). Optimization of MSMEs Clustering in Sampang District Using K-Medoids Method and Silhouette Coefficient Method. Teknika, 14(1), 1–8. https://doi.org/10.34148/teknika.v14i1.1116

Gori, T., Sunyoto, A., & Al Fatta, H. (2024). Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(1), 215–224. https://doi.org/10.25126/jtiik.20241118074

Judijanto, L., Asniar, N., Kushariyadi, K., Utami, E. Y., & Telaumbanua, E. (2024). Application of Integrated Logistics Networks in Improving the Efficiency of Distribution and Delivery of Goods in Indonesia a Literature Review. Sciences Du Nord Economics and Business, 1(01), 01–10. https://doi.org/10.58812/sneb.v1i1.6

Lu, J., Yan, Z., Han, J., & Zhang, G. (2019). Data-Driven Decision-Making (D3 M): Framework, Methodology, and Directions. IEEE Transactions on Emerging Topics in Computational Intelligence, 3(4), 286–296. https://doi.org/10.1109/TETCI.2019.2915813

Masbullah Masbullah & Salmi Yuniar Bahri. (2024). Manajemen Strategi Segmenting, Targeting, Positioning dalam Pemasaran Internasional. Sammajiva: Jurnal Penelitian Bisnis Dan Manajemen, 2(4), 108–118. https://doi.org/10.47861/sammajiva.v2i4.1489

Melovic, B., Rondovic, B., Mitrovic-Veljkovic, S., Ocovaj, S. B., & Dabic, M. (2022). Electronic Customer Relationship Management Assimilation in Southeastern European Companies—Cluster Analysis. IEEE Transactions on Engineering Management, 69(4), 1081–1100. https://doi.org/10.1109/TEM.2020.2972532

Rahmawati, T., Wilandari, Y., & Kartikasari, P. (2024). Analisis Perbandingan Silhouette Coefficient dan Metode Elbow pada Pengelompokan Provinsi di Indonesia Berdasarkan Indikator IPM dengan K-Medoids. Jurnal Gaussian, 13(1), 13–24. https://doi.org/10.14710/j.gauss.13.1.13-24

Tabianan, K., Velu, S., & Ravi, V. (2022). K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data. Sustainability, 14(12), 7243. https://doi.org/10.3390/su14127243

Unus, E. G. (2024). Teknologi Data Mining Berbasis Metode Clustering Sebagai Ujung Tombak Perkembangan UMKM Di Indonesia Dalam Era Revolusi Industri 4.0. Jurnal Repositor, 3(3). https://doi.org/10.22219/repositor.v3i3.31068

Yosia, & Siregar, B. (2024). Comparative Analysis of K-Means and K-Medoids Algorithms for Product Sales Clustering and Customer. Journal of Mathematics, Computations and Statistics, 7(2), 360–370. https://doi.org/10.35580/jmathcos.v7i2.4053

Yu, H., Chen, L., Yao, J., & Wang, X. (2019). A three-way clustering method based on an improved DBSCAN algorithm. Physica A: Statistical Mechanics and Its Applications, 535, 122289. https://doi.org/10.1016/j.physa.2019.122289

Zheng, K., Huo, X., Jasimuddin, S., Zhang, J. Z., & Battaïa, O. (2023). Logistics distribution optimization: Fuzzy clustering analysis of e-commerce customers’ demands. Computers in Industry, 151, 103960. https://doi.org/10.1016/j.compind.2023.103960

Downloads

Additional Files

Published

2025-11-03

How to Cite

Analysis of Order Data Customer Segmentation in Logistics Companies Using K-Medoids and DBSCAN Algorithms. (2025). Technologia Journal, 2(4), 21-29. https://doi.org/10.62872/d6hbsb69

Similar Articles

1-10 of 20

You may also start an advanced similarity search for this article.