Design and Development of a Predictive AI Model for Early Detection of Mental Disorders in Adolescents

Authors

  • Robinson Robinson Politeknik Negeri Sriwijaya Author
  • Ahmad Ari Gunawan Sepriansyah Politeknik Negeri Sriwijaya Author
  • Ahmad Zarkasih Politeknik Negeri Sriwijaya Author
  • Selvia Damayanti Universitas Serelo Lahat, Indonesia Author

DOI:

https://doi.org/10.62872/bx45ph86

Keywords:

mental disorder, adolescents, artificial intelligence, prediction, Random Forest, DASS-21

Abstract

Adolescents are a vulnerable age group for mental disorders such as depression, anxiety, and stress. Early detection is crucial to enable timely and appropriate interventions. This study aims to design and develop a predictive artificial intelligence (AI) model capable of identifying potential mental health issues in adolescents. The research applies a quantitative experimental approach, collecting data through the locally validated DASS-21 questionnaire. The data were analyzed using Random Forest, Support Vector Machine, and Multilayer Perceptron algorithms, evaluated by accuracy, precision, recall, and F1-score metrics. The findings indicate that the Random Forest model achieved the highest accuracy at 87.4%. The system was designed with a user-friendly interface that delivers prediction results along with initial intervention recommendations. This study offers a significant contribution to preventive efforts in adolescent mental health through adaptive, accurate, and ethical AI-based technology.

Downloads

Download data is not yet available.

References

AlSagri, H., & Ykhlef, M. (2020). Quantifying Feature Importance for Detecting Depression using Random Forest. International Journal of Advanced Computer Science and Applications, 11(5). https://doi.org/10.14569/IJACSA.2020.0110577

Chougrad, H., Zouaki, H., & Alheyane, O. (2020). Multi-label transfer learning for the early diagnosis of breast cancer. Neurocomputing, 392, 168–180. https://doi.org/10.1016/j.neucom.2019.01.112

Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H., & Eichstaedt, J. C. (2019). Detecting depression and mental illness on social media: An integrative review. ScienceDirect. https://doi.org/doi.org/10.1016/j.cobeha.2017.07.005

Jackins, V., Vimal, S., Kaliappan, M., & Lee, M. Y. (2021). AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. The Journal of Supercomputing, 77(5), 5198–5219. https://doi.org/10.1007/s11227-020-03481-x

Listiyandini, R. A., Andriani, A., Afsari, N., Krisnamurthi, P. B. U., Moulds, M. L., J, A. E., Mahoney, & Newby, J. M. (2024). Evaluating the Feasibility of a Guided Culturally Adapted Internet-Delivered Mindfulness Intervention for Indonesian University Students Experiencing Psychological Distress. Mindfulness. https://doi.org/10.1007/s12671-024-02346-1

Liu, X., Cang, R., Zhang, Z., Li, P., Wu, H., Liu, W., & Li, S. (2025). Identification of depressive symptoms in adolescents using machine learning combining childhood and adolescence features. BMC Public Health. https://doi.org/10.1186/s12889-025-21506-z

Mardini, amoun T., Khalil, G. E., Bai, C., DivaKaran, A. M., & Ray, J. M. (2025). Identifying Adolescent Depression and Anxiety Through Real-World Data and Social Determinants of Health: Machine Learning Model Development and Validation. JMIRHealth. https://doi.org/doi:10.2196/66665

Nguyen, & Phung. (2021). Multimodal deep learning for mental disorder detection using social media. Information Processing & Management. https://doi.org/doi.org/10.1016/j.ipm.2020.102546

Rahma, M., Fikry, M., & Afrillia, Y. (2025). Prediksi Kesehatan Mental Remaja Berdasarkan Faktor Lingkungan Sekolah Menggunakan Machine Learning. JPIT. https://doi.org/10.30591/jpit.v10i2.8556

Ririn, Rinaldi, A. R., & Basysyar, F. M. (2025). PREDIKSI KESEHATAN MENTAL MENGGUNAKAN RANDOM FOREST BERDASARKAN FAKTOR DEMOGRAFI DAN LINGKUNGAN KERJA. JATI : Jurnal Mahasiswa Teknik Informatika. https://doi.org/doi.org/10.36040/jati.v9i3.13720

Satria, A., Nurdin, B., & Adi, S. E. (2023). Implementasi Metode Support Vector Machine (SVM) dan t-Distributed Stochastic Neighbor Embedding (t-SNE) untuk Klasifikasi Depresi. Jurnal Masyarakat Informatika.

Sharma, G., Yaffe, M. J., Ghadiri, P., Gandhi1, R., Pinkham, L., Gore, G., & Abbasgholizadeh-Rahimi, S. (2025). Use of Artificial Intelligence in Adolescents’ Mental Health Care: Systematic Scoping Review of Current Applications and Future Directions. JMIR Mental Health. https://doi.org/10.2196/70438

Sudrajat, M. R., & Zakariyah, M. (2024). Penerapan Natural Language Processing dan Machine Learning untuk Prediksi Stres Siswa SMA Berdasarkan Analisis Teks. Building of Informatics, Technology and Science (BITS). https://doi.org/DOI 10.47065/bits.v6i3.6180

Tate, A. E., McCabe, R. C., Larsson, H., Lundström, S., Lichtenstein, P., & Kuja-Halkola, R. (2020). Predicting mental health problems in adolescence using machine learning techniques. PLOS ONE, 15(4), e0230389. https://doi.org/10.1371/journal.pone.0230389

Toharudin, T., Caraka, R. E., Kaban, P. A., Supardi, K., Kurniawan, R., Kim, Y., Mufti, S. A., Gio, P. U., Sakti, A. D., Chen, R.-C., Noh, M., & Pardamean, B. (2024). Investigating Adolescent Vulnerability in Indonesia: A Socio-Remote Sensing Big Data Analytics Study Using Night Light Data. IEEE Access, 12, 14800–14818. https://doi.org/10.1109/ACCESS.2024.3355963

Upreti, K., Verma, M., Agrawal, M., Garg, J., Kaushik, R., Agrawal, C., Singh, D., & Narayanasamy, R. (2022). Prediction of Mechanical Strength by Using an Artificial Neural Network and Random Forest Algorithm. Journal of Nanomaterials, 2022(1), 7791582. https://doi.org/10.1155/2022/7791582

Yang, F., Wei, J., Zha, X., & An, R. (2025). Artificial Intelligence–Based Mobile Phone Apps for Child Mental Health: Comprehensive Review and Content Analysis. JMIR Mhealth Uhealth. https://doi.org/10.2196/58597

Downloads

Additional Files

Published

2025-08-12

How to Cite

Design and Development of a Predictive AI Model for Early Detection of Mental Disorders in Adolescents. (2025). Technologia Journal, 2(3), 17-25. https://doi.org/10.62872/bx45ph86