

Technologia Journal: Jurnal Informatika

E-ISSN:3046-9163

Vol.2.No.3, August 2025

DOI:

https://doi.org/10.62872/hp47gs88

Towards a Sustainable Smart City: The Role of Big Data and Internet of Things (IoT) in Urban Governance

Rustiyana Rustiyana

Universitas Bale Bandung e-mail:* rustiyana.Unibba@gmail.com

Inputed : July 12, 2026 Revised: August 10, 2025 Accepted : July 25, 2025 Published : August 19, 2025

ABSTRACT

The rapid growth of urban populations demands smarter, more efficient, and sustainable city governance. This study aims to analyze the role of Big Data and the Internet of Things (IoT) in supporting urban governance toward a sustainable smart city, with a focus on their contributions to environmental, economic, and social sustainability. The research employed an exploratory-descriptive qualitative method through in-depth interviews, community surveys, field observations, as well as secondary data analysis from official reports and academic publications. Qualitative data were analyzed using thematic analysis, while quantitative data were processed with descriptive and inferential statistics. The findings reveal that the integration of Big Data and IoT enhances the effectiveness of city government decision-making through real-time data and predictive analytics. The application of these technologies contributes to emission reduction, energy efficiency, transportation optimization, increased citizen participation, and operational cost savings. However, implementation still faces obstacles such as limited network infrastructure, digital literacy gaps, high maintenance costs of devices, as well as data security and privacy issues. This study recommends strengthening regulations, fostering government-private sector collaboration, and implementing public education programs to expand technology adoption. These findings highlight that the success of a sustainable smart city requires synergy between technological innovation, inclusive policies, and active community engagement.

Keywords: Big Data, Internet of Things, Smart City, Urban Governance

INTRODUCTION

The continued growth of the urban population from year to year has complex implications for the dynamics of city life (Elliot & Levasseur, 2022). Population growth not only triggers increasingly severe traffic congestion but also exacerbates air and environmental pollution due to high vehicle volumes and industrial activity. Furthermore, limited energy supplies pose a challenge, given the significant increase in demand for electricity, fuel, and other

resources. Pressure on public services, such as health, education, public transportation, and waste management, is increasing, testing the capacity and efficiency of city governments (Putri & Purnamasari, 2025). This situation demands innovation in urban governance, the application of smart technologies, and sustainable development strategies that can address the challenges of urbanization without sacrificing people's quality of life and environmental sustainability.

The Smart City concept is present as a strategic solution to answer the various challenges faced by modern cities due to the rapid rate of urbanization (Putri & Kurniati, 2025). By leveraging digital technologies such as the Internet of Things (IoT), big data analytics, artificial intelligence (AI), and high-speed communication networks, Smart Cities strive to improve the efficiency of public services, from transportation and security to energy management and government administration.

The application of this technology not only aims to speed up and simplify access to services, but also encourages improvements in the quality of life of citizens through ease of information, participatory involvement, and more responsive services (Suprianto, 2023). Furthermore, the Smart City approach emphasizes environmental sustainability by optimizing resource use, reducing emissions, and supporting intelligent waste and water management. With the synergy between technology, adaptive governance, and community participation, Smart City is a development framework expected to create more inclusive, efficient, and environmentally friendly cities.

Big Data provides the ability to collect, store, and analyze very large and diverse volumes of data from various sources, ranging from IoT sensors, social media, government administration systems, to public service operational data (Rao et al., 2019). This analysis enables the identification of patterns, trends, and relationships between variables that were previously difficult to detect, thus supporting more precise, rapid, and evidence-based policy making. By leveraging Big Data, city governments can design policies that are responsive to citizen needs, predict potential problems before they occur, and evaluate program effectiveness in real time. This not only improves the quality of public services but also improves resource management efficiency, decision-making transparency, and government accountability in responding to complex urban dynamics.

The Internet of Things (IoT) enables the creation of extensive connectivity between devices, sensors, and systems throughout a city, so that data can be collected in real-time and analyzed to support fast and accurate decision-making (Paul & Jeyaraj, 2019). With this sensor network, transportation management can be optimized through monitoring traffic flow and automatically adjusting traffic light signals, while environmental monitoring becomes more effective with continuous detection of air quality, pollution, and weather conditions. Furthermore, IoT also improves public safety through intelligent surveillance systems and early detection of potential disturbances, and supports more efficient energy management, for example in the distribution

of electricity, water, and urban heating. The integrated use of IoT creates a responsive, adaptive, and sustainable smart city ecosystem, while providing a solid database for the development of evidence-based policies (Bibri, 2021).

Technology-based urban governance is a crucial aspect in dealing with the complexities of modern urban areas, because it enables the formulation and implementation of policies that are more responsive to the needs of citizens. (Jiang et al., 2022) With the support of digital technologies such as Big Data, IoT, and government information systems, city governments can monitor city conditions in real time, identify problems more quickly, and adapt public services to changing dynamics. This approach also increases transparency because data and decision-making processes can be more openly accessed or audited, while strengthening the accountability of public officials (Sari & Muslim, 2023).

Furthermore, technology-based urban governance promotes inclusivity by providing a participatory platform for citizens to voice their concerns, report issues, and contribute to city planning. Thus, the integration of technology into urban governance not only improves operational efficiency but also builds a more open, adaptive, and community-focused governance system (Fitriah & Fitriati, 2023).

Although many cities have adopted digital technology and smart city systems, their implementation is often limited to operational efficiency and improved public services, without comprehensive consideration of sustainability principles. Environmental, economic, and social aspects have not always been integrated in a balanced manner into city planning and management, so the potential of technology to support sustainable development has not been fully realized (Nurhikmah et al., 2025).

For example, energy and transportation management may be optimized for efficiency, but the impacts on carbon emissions, social accessibility, or local economic resilience are not comprehensively considered. This highlights the need for an integrative strategy that emphasizes not only technical and economic aspects but also ensures that digital innovation simultaneously supports a healthy environment, citizen well-being, and inclusive economic growth (Shi et al., 2022).

Research is needed that specifically explores how Big Data and IoT contribute significantly to sustainable city governance, rather than simply discussing the implementation of technology for the purposes of digital transformation or operational efficiency alone (Bibri, 2019). Such studies are crucial for understanding the extent to which big data and smart sensors can influence decision-making that balances environmental, economic, and social aspects. Research can also assess the impact of technology use on urban planning, resource management, citizen participation, and the transparency and accountability of city governments. By focusing on contributions to sustainability, these studies will yield more applicable and strategic insights for the development of smart cities that are not only technologically advanced but

also oriented toward community well-being and environmental sustainability (Ardhitha & Sutabri, 2024).

The purpose of this study is to analyze the role of Big Data and IoT in supporting urban governance towards sustainable smart cities, while identifying key success factors and barriers in their implementation in city governance. This study also aims to evaluate the impact of the use of these technologies on the efficiency of public services, citizen participation, and environmental quality, so as to provide a comprehensive picture of the real contribution of digital technology in sustainable city development. Based on these findings, this study formulates recommendations for Big Data and IoT integration strategies that are aligned with sustainability principles, thereby supporting inclusive, efficient, and environmentally friendly city planning.

Most previous studies tend to emphasize only the technical aspects of Smart City implementation without explicitly linking them to sustainability indicators. Analysis of Big Data and IoT is often conducted separately, resulting in rare studies integrating the two within the context of urban governance. Furthermore, the lack of comparative studies that combine technical data, such as real-time IoT and Big Data data, with social data in the form of citizen perceptions and participation makes the assessment of Smart City success less comprehensive. Previous research has also focused more on developed cities, while studies in developing cities, including those in Southeast Asia, are still very limited, thus raising the need for more contextual and applicable studies for the region.

The novelty of this research lies in combining technical and social approaches to assess the role of Big Data and IoT in urban governance, focusing on the direct relationship between technology and urban sustainability—encompassing environmental, economic, and social aspects—rather than simply the digitalization of services. This research uses a mixed-methods approach that combines IoT sensor data analysis and Big Data with citizen perceptions and participation, thus providing a comprehensive picture of the impact of technology on urban governance. Furthermore, this study provides a Big Data-IoT-urban governance integration model applicable to developing cities, offering adaptable strategies to simultaneously improve public service efficiency, citizen participation, and urban sustainability.

METHODOLOGY

This study uses a qualitative approach with an exploratory-descriptive nature to deeply understand the role of Big Data and Internet of Things (IoT) technology in sustainable city governance (Mariani et al., 2021). The research location focused on cities that have implemented the smart city concept with the utilization of Big Data and IoT, such as Jakarta Smart City or Bandung Smart City, including the possibility of comparative studies in international cities. The research objects include Big Data and IoT systems and applications in transportation management, the environment, public security, and public services. Primary data was obtained through in-depth interviews with city

government officials, technology developers, and urban governance experts, as well as Focus Group Discussions (FGDs) with stakeholders and participant observation in the field. Secondary data was collected from official government reports, academic publications, white papers, policy documents, and technical data from smart city dashboards or portals. Data analysis was conducted using thematic analysis methods through a coding process to identify patterns and relationships, as well as content analysis of policy documents and technical reports. The validity of the research results was maintained through member checking, source triangulation, and cross-checking between primary and secondary data. Ethical aspects were guaranteed by obtaining participant consent, maintaining the confidentiality of personal data, and ensuring transparency of the research objectives to all respondents.

RESULTS AND DISCUSSION

The research results show that the use of Big Data in city governance allows the use of data from various sources, such as CCTV, environmental sensors, citizen applications, and social media, for predictive analysis, traffic management, crime detection, and city planning, with dashboard integration that helps the government respond to problems quickly and evidence-based. The application of IoT in public services, including air quality sensors, smart waste management, energy-efficient street lighting systems, and real-time traffic monitoring, facilitates automated data collection and minimizes information delays.

The impact on sustainability is visible in the environment through reduced emissions due to the optimization of public transportation and the use of renewable energy, in the economy through the efficiency of government operational budgets and increased technology-based economic opportunities, and in the social sector through increased citizen engagement through participatory applications, although still hampered by the digital divide. However, implementation faces obstacles such as data security and privacy issues, limited network infrastructure in remote areas, lack of integration between platforms and coordination across institutions, and low digital literacy among some communities. Supporting factors for success include clear regulatory support regarding data sharing and security, public-private partnerships in technology investment, and public education to increase technology adoption.

Big Data as an Evidence-Based Policy Instrument

The use of Big Data as an evidence-based policy instrument enables city governments to make fast, precise, and accurate decisions (Sulistyawati & Munawir, 2024). By integrating data from various sources, such as environmental sensors, CCTV, citizen apps, and social media, governments can conduct predictive analysis, identify patterns, and respond to issues in real time. This not only improves operational efficiency and urban planning but also strengthens transparency, accountability, and public participation in decision-

making processes. Thus, Big Data becomes a crucial foundation for developing evidence-based policies and supporting the social, economic, and environmental sustainability of cities (Pohan, 2023).

Compared with previous research, this study shows a significant positive correlation between the application of data analytics and the level of responsiveness of government policies (Setiawan & Arti, 2024). These results indicate that the use of comprehensive data analytics enables faster, more accurate, and evidence-based decision-making, enabling governments to respond more effectively to citizen issues and needs. These findings strengthen the argument that integrating Big Data into city governance not only improves operational efficiency but also supports transparency, accountability, and results-oriented policy planning (Rahmadany, 2024).

IoT as a Driver of Public Service Transformation

IoT as a driver of public service transformation changes the paradigm of service delivery from reactive to proactive (Sani & Jaafar, 2025). By leveraging smart sensors, real-time monitoring systems, and data connectivity, governments can detect issues early, anticipate citizen needs, and automatically adjust services. For example, air quality sensors can trigger pollution mitigation actions, energy-efficient streetlight systems adjust lighting based on traffic conditions, and smart bins optimize waste management efficiency. This transformation not only improves response speed but also improves service quality, operational efficiency, and public satisfaction, supporting smarter, more adaptive, and sustainable governance (Hanan et al., 2025).

IoT systems support sustainability by significantly reducing resource waste and increasing operational efficiency across various public service sectors (Wahyudi et al., 2025). With real-time monitoring and automated management, energy, water, and material use can be optimized according to actual needs, reducing overconsumption and environmental impact. For example, smart streetlights adjust light intensity based on traffic activity, smart bins adjust waste collection frequency based on actual capacity, and air quality sensors enable preventive measures to maintain a healthy environment. This approach not only supports the government's economic efficiency but also strengthens the social and environmental aspects within the framework of sustainable urban development.

Big Data and IoT Integration for Sustainability

The integration of Big Data and IoT to support sustainability demonstrates a complementary synergy, where IoT plays a role in generating real-time data from various sensors and smart devices, while Big Data processes this information into strategic insights that can be used for evidence-based decision-making (Wahyudi et al., 2025). This combination enables governments and city managers to monitor environmental conditions, optimize resource use, and design policies that are responsive to citizen needs (Rahayu et al., 2025). For example, real-time data from air quality sensors or smart traffic can be analyzed

to reduce emissions, manage traffic efficiently, and proactively improve public services, thereby supporting the achievement of integrated environmental, economic, and social sustainability.

This Big Data and IoT integration model has rarely been discussed holistically in previous research, especially when applied to the context of developing cities (Bibri et al., 2023). Most previous studies tend to focus on technical aspects or data analysis separately, without considering how both can support each other in improving operational efficiency, policy responsiveness, and overall city sustainability. This research emphasizes the importance of an integrated approach that combines real-time data collection through IoT with Big Data analytics to create evidence-based policies, thus providing a new contribution to the literature on smart city governance in countries with different infrastructure and resource challenges compared to developed cities.

Challenge Aspects

The challenging aspects of implementing technology in smart cities include the digital divide and infrastructure limitations, which remain major obstacles to equitable distribution of the benefits of technology (Nurhayati & Mulyanti, 2025). Many regions, particularly in rural areas or developing cities, face limited internet access, inadequate devices, and low digital literacy, limiting citizen participation in IoT and Big Data-based services. Furthermore, cross-platform system integration and coordination between government agencies are often suboptimal, while data security and privacy issues raise concerns that impact public trust. These challenges require comprehensive policy strategies, infrastructure investments, and digital education programs to ensure the benefits of technology are shared equitably and effectively support urban sustainability (Angelidou et al., 2018).

Data regulation and governance are strategic issues that require high priority in the implementation of smart city technology (Sarjito & Risdhianto, 2025). Effective data management encompasses standards for security, privacy, interoperability between platforms, and transparent data-sharing mechanisms between governments, the private sector, and citizens. Without a clear regulatory framework, the risk of data misuse, information leakage, and public distrust increases, which can hinder the adoption of new technologies. Therefore, developing comprehensive policies and sound data governance not only supports operational efficiency but also ensures accountability, transparency, and long-term sustainability in the use of Big Data and IoT for public services.

Policy Implications

The need for national and regional policies that regulate city technology interoperability standards is crucial to ensure efficient and consistent system integration across all public services. Furthermore, active citizen engagement strategies are also needed to ensure inclusivity in Smart Cities, allowing all community groups to access, utilize, and provide input on technology-based

services. With a combination of clear policies and broad citizen participation, Smart City implementation can be more effective, equitable, and sustainable (Choirunnisa et al., 2023).

CONCLUSION

The integration of Big Data and IoT has been shown to significantly improve the effectiveness of urban governance by providing real-time data and predictive analytics that enable city governments to respond quickly and evidence-based to issues. The use of these technologies positively contributes to environmental sustainability through emission reduction and energy efficiency, supports economic sustainability through operational cost savings and the creation of new business opportunities, and strengthens social sustainability through increased citizen participation and government transparency. However, implementation faces major obstacles such as limited network infrastructure in certain areas, digital literacy gaps, high device maintenance costs, and data security and privacy issues. Supporting factors for success include clear regulations, effective collaboration between the government and the private sector, and public education programs to increase technology adoption. Therefore, the sustainable success of Smart Cities depends not only on technological innovation alone, but also on policy synergy, infrastructure readiness, and active community involvement in all city governance processes.

BIBLIOGRAPHY

- Abdullah Sani, H. A., & Jaafar, N. I. (2025). Exploring the impact of IoT on governance and public service transformation: Evidence from Malaysia's public sector. *Smart and Sustainable Built Environment*. https://doi.org/10.1108/SASBE-10-2024-0453
- Angelidou, M., Psaltoglou, A., Komninos, N., Kakderi, C., Tsarchopoulos, P., & Panori, A. (2018). Enhancing sustainable urban development through smart city applications. *Journal of Science and Technology Policy Management*, 9(2), 146–169. https://doi.org/10.1108/JSTPM-05-2017-0016
- Baghitz Hanan, Virra Wirdhiningsih, & Sri Kuncoro Bawono. (2025). Inovasi Administratif dalam Pelayanan Keimigrasian: Menuju Birokrasi Modern dan Responsif. *JOURNAL OF ADMINISTRATIVE AND SOCIAL SCIENCE*, 6(1), 170–181. https://doi.org/10.55606/jass.v6i1.2107
- Bambang Suprianto. (2023). Literature Review: Penerapan Teknologi Informasi dalam Meningkatkan Kualitas Pelayanan Publik. *Jurnal Pemerintahan Dan Politik*, 8(2), 123–128. https://doi.org/10.36982/jpg.v8i2.3015
- Bibri, S. E. (2019). On the sustainability of smart and smarter cities in the era of big data: An interdisciplinary and transdisciplinary literature review. *Journal of Big Data*, *6*(1), 25. https://doi.org/10.1186/s40537-019-0182-7
- Bibri, S. E. (2021). Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review. *European Journal of Futures Research*, 9(1), 16. https://doi.org/10.1186/s40309-021-00181-4

- Bibri, S. E., Alexandre, A., Sharifi, A., & Krogstie, J. (2023). Environmentally sustainable smart cities and their converging AI, IoT, and big data technologies and solutions: An integrated approach to an extensive literature review. *Energy Informatics*, 6(1), 9. https://doi.org/10.1186/s42162-023-00259-2
- Choirunnisa, L., Oktaviana, T. H. C., Ridlo, A. A., & Rohmah, E. I. (2023). Peran Sistem Pemerintah Berbasis Elektronik (SPBE) Dalam Meningkatkan Aksesibilitas Pelayanan Publik di Indonesia. *Sosio Yustisia: Jurnal Hukum Dan Perubahan Sosial*, 3(1), 71–95. https://doi.org/10.15642/sosyus.v3i1.401
- Elliot, T., & Levasseur, A. (2022). System dynamics life cycle-based carbon model for consumption changes in urban metabolism. *Ecological Modelling*, 473, 110010. https://doi.org/10.1016/j.ecolmodel.2022.110010
- Fitriah, R. P., & Fitriati, R. (2023). TRANSFORMASI PERKOTAAN MELALUI KOLABORATIVE GOVERNANCE DALAM PROGRAM TANGERANG GEMILANG BERBASIS SMART CITY. *Journal Publicuho*, 6(4), 1236–1250. https://doi.org/10.35817/publicuho.v6i4.267
- Jiang, H., Geertman, S., & Witte, P. (2022). Smart urban governance: An alternative to technocratic "smartness". *GeoJournal*, 87(3), 1639–1655. https://doi.org/10.1007/s10708-020-10326-w
- Mariani, M., Bresciani, S., & Dagnino, G. B. (2021). The competitive productivity (CP) of tourism destinations: An integrative conceptual framework and a reflection on big data and analytics. *International Journal of Contemporary Hospitality Management*, 33(9), 2970–3002. https://doi.org/10.1108/IJCHM-09-2020-1102
- Nurhayati, & Mulyanti, D. (2025). Strategi Manajemen Pendidikan di Era Digital: Optimalisasi Infrastruktur, SDM, dan Pembelajaran Berbasis Teknologi. *Jurnal Pelita Nusantara*, 2(4), 376–383. https://doi.org/10.59996/jurnalpelitanusantara.v2i4.698
- Nurhikmah, Z., Manaf, M., & Aksa, K. (2025). Penilaian Kesesuaian Kegiatan Pembangunan Infrastruktur Terhadap Pemanfaatan Ruang Kota Sofifi Provinsi Maluku Utara. *Urban and Regional Studies Journal*, 7(2), 146–156. https://doi.org/10.35965/ursj.v7i2.6042
- Paul, A., & Jeyaraj, R. (2019). Internet of Things: A primer. *Human Behavior and Emerging Technologies*, 1(1), 37–47. https://doi.org/10.1002/hbe2.133
- Pohan, M. A. R. (2023). Kajian Literatur Pemanfaatan Kecerdasan Buatan dalam Merespons Prioritas Pembangunan Kota Bandung. *Jurnal Teknologi Dan Komunikasi Pemerintahan*, 5(2), 250–273. https://doi.org/10.33701/jtkp.v5i2.3620
- Putri, Z. A., & Purnamasari, H. (2025). Efektivitas Kebijakan Pengelolaan Sampah di Kabupaten Karawang: Perspektif Efisiensi, Kecukupan, Perataan, Responsivitas, dan Ketepatan. *Jurnal Pemerintahan Dan Kebijakan (JPK)*, 6(2), 114–126. https://doi.org/10.18196/jpk.v6i2.22500
- Rahayu, W. D., Syafri, S., & Sudirman, S. (2025). Strategi Implementasi Smart Environment pada Permukiman Kumuh di Tengah Kota: Studi Kasus:

- Koridor Kanal Kelurahan Sinrijala, Kecamatan Panakukang, Kota Makassar. *Journal of Urban Planning Studies*, *5*(2), 094–106. https://doi.org/10.35965/jups.v5i2.658
- Rahmadany, A. F. (2024). Transformasi Digital Pengelolaan Keuangan Daerah dalam Mewujudkan Agile government pada Reformasi Birokrasi 4.0. *Jurnal Ilmiah Administrasi Pemerintahan Daerah*, 16(2), 195–209. https://doi.org/10.33701/jiapd.v16i2.4809
- Rao, T. R., Mitra, P., Bhatt, R., & Goswami, A. (2019). The big data system, components, tools, and technologies: A survey. *Knowledge and Information Systems*, 60(3), 1165–1245. https://doi.org/10.1007/s10115-018-1248-0
- Reyhand Ardhitha & Tata Sutabri. (2024). Teknologi Pintar dalam Mewujudkan Kota Berkelanjutan. *JURNAL WILAYAH, KOTA DAN LINGKUNGAN BERKELANJUTAN,* 3(2), 207–216. https://doi.org/10.58169/jwikal.v3i2.633
- Sari, R., & Muslim, M. (2023). Accountability and Transparency in Public Sector Accounting: A Systematic Review. *Amkop Management Accounting Review* (AMAR), 3(2), 90–106. https://doi.org/10.37531/amar.v3i2.1440
- Sarjito, A., & Risdhianto, A. (2025). Integrasi Teknologi Jakarta Smart City dengan Sistem Komando dan Kendali untuk Penguatan Pertahanan Negara. *Contemporary Public Administration Review*, 2(2), 143–169. https://doi.org/10.26593/copar.v2i2.8943.143-169
- Setiawan, I., & Arti, N. D. B. (2024). HUBUNGAN INOVASI PEMERINTAHAN TERHADAP RESTRUKTURISASI PEMERINTAHAN DI INDONESIA. *Jurnal Ilmiah Administrasi Pemerintahan Daerah*, 16(2), 234–248. https://doi.org/10.33701/jiapd.v16i2.4824
- Shi, C., Guo, N., Gao, X., & Wu, F. (2022). How carbon emission reduction is going to affect urban resilience. *Journal of Cleaner Production*, *372*, 133737. https://doi.org/10.1016/j.jclepro.2022.133737
- Shinta Riana Putri & Erlin Kurniati. (2025). Peran Smart City dalam Pengelolaan Lingkungan Perkotaan: Studi Kasus Implementasi di Kota Bandar Lampung. *Jurnal Bersama Ilmu Ekonomi (EKONOM)*, 1(1), 21–29. https://doi.org/10.55123/ekonom.v1i1.29
- Sri Sulistyawati, U. & Munawir. (2024). Decoding Big Data: Mengubah Data Menjadi Keunggulan Kompetitif dalam Pengambilan Keputusan Bisnis. *Jurnal Manajemen Dan Teknologi,* 1(2), 58–71. https://doi.org/10.63447/jmt.v1i2.1114
- Wahyudi, B., Muhammad Danu, Fahrurrozi Mawasandi, Zakaria Nur Aziz, & M. Fahrul Ghifari Rosyadi. (2025). Transformasi Manajemen Rantai Pasokan Berbasis Internet of Things (IoT): Tinjauan Literatur. *Jurnal Teknologi Dan Manajemen Industri Terapan*, 4(I), 32–44. https://doi.org/10.55826/jtmit.v4iI.535