

The Use of Wearable Technology for Cardiovascular Health Monitoring: An Evidence-Based Perspective

Miter Elidanovan Harefa[✉]

Faculty of Medicine HKBP Nommensen University, Indonesia

e-mail: miterharefa808@gmail.com

Input : November 09, 2025
Accepted : December 25, 2025

Revised : November 23, 2025
Published : December 30, 2025

ABSTRACT

Cardiovascular disease remains the leading cause of global morbidity and mortality, highlighting the need for more preventive and continuous health monitoring approaches. The rapid development of wearable technology offers real-time and continuous cardiovascular monitoring; however, the strength of scientific evidence supporting its effectiveness remains inconsistent. This study aims to systematically analyze the use of wearable technology in cardiovascular health monitoring from an evidence-based perspective. A Systematic Literature Review with an evidence-based approach was conducted using peer-reviewed journal articles retrieved from Scopus, PubMed, Web of Science, and ScienceDirect. Following a PRISMA-based selection process, 38 articles met the inclusion criteria and were qualitatively synthesized. The findings indicate that wearable technology demonstrates relatively strong effectiveness in heart rate monitoring and early screening of cardiac arrhythmias, while evidence for more complex clinical parameters such as blood pressure and heart failure monitoring remains limited and inconsistent. The existing literature is predominantly characterized by non-randomized studies and short-term clinical validation. This study concludes that wearable technology should be positioned as an adjunct to evidence-based clinical practice rather than a substitute for conventional medical examinations and underscores the need for stronger methodological designs and supportive regulatory frameworks in digital health.

Keywords: *Cardiovascular Health; Evidence-Based Practice; Monitoring; Wearable Technology*

INTRODUCTION

Cardiovascular diseases remain the leading cause of mortality globally and nationally, representing an increasing health burden alongside demographic changes and modern lifestyle patterns. Globally, cardiovascular diseases contribute substantially to morbidity and mortality, affecting not only older populations but also productive age groups that are increasingly exposed to risk factors such as sedentary lifestyles, obesity, hypertension, and chronic stress (Bayoumy et al., 2021; Hughes et al., 2023). This condition underscores

that healthcare approaches relying on episodic detection and periodic clinical visits are no longer sufficient to anticipate the dynamics of cardiovascular diseases, which are progressive in nature and often asymptomatic in their early stages. Consequently, there is an urgent need to shift healthcare approaches toward preventive strategies and continuous monitoring that are capable of detecting early physiological changes before they develop into serious clinical conditions. This condition highlights the limitations of episodic clinical detection and underscores the need for earlier and more continuous cardiovascular risk identification.

The development of digital technology over the past two decades has driven significant transformation in healthcare practices, particularly through the utilization of wearable technology. Devices such as smartwatches, fitness trackers, and biosensors based on photoplethysmography and electrocardiography enable real time monitoring of cardiovascular parameters in daily life settings (Charlton et al., 2022; Chen et al., 2021). Wearable technology offers the capability to monitor heart rate, heart rate variability, physical activity, noninvasive blood pressure, and even detect cardiac arrhythmias, functions that were previously limited to clinical environments. This transformation marks a shift toward the datafication of health, in which individual physiological data are continuously recorded and potentially integrated into clinical decision support systems (Miao et al., 2022).

The adoption of wearable technology in the context of cardiovascular health has shown a significant upward trend globally. Recent studies report that wearable devices are increasingly used not only for fitness purposes but also as tools for monitoring chronic cardiovascular conditions and for the early detection of heart disease (Bayoumy et al., 2021; Wang et al., 2024). In clinical practice, wearable technology has begun to be explored as a supportive instrument for monitoring patients with heart failure, screening for atrial fibrillation, and evaluating responses to lifestyle interventions and medical therapies (Jafari et al., 2024; Scholte et al., 2024).

However, the increasing adoption of wearable technology also raises critical academic and clinical concerns, particularly regarding clinical validity and the strength of scientific evidence supporting claims of effectiveness. Many wearable devices are marketed with promises of early detection and improved health outcomes, yet not all such claims are supported by strong and consistent clinical evidence (Hughes et al., 2023; Moshawrab et al., 2023). This situation poses the risk of technological overclaim, where digital innovations are widely adopted without adequate evidence based evaluation.

The scientific literature on wearable technology and cardiovascular health is expanding rapidly but remains fragmented and heterogeneous. Some studies focus primarily on technological innovation and sensor performance, such as the accuracy of photoplethysmography and multisensor integration, without directly linking these aspects to long term clinical implications (Alfonso et al., 2022; Zang et al., 2025). Other studies emphasize user adoption, usability, and

patient engagement, yet provide limited evaluation of clinically measurable health outcomes (Ravichandran & Mph, 2025; Yunus et al., 2025).

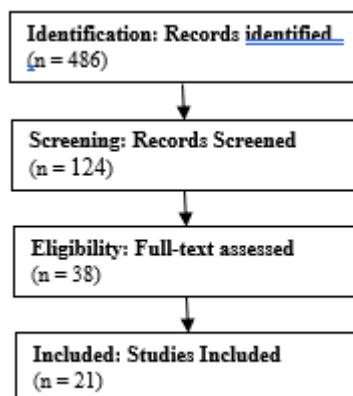
Bayoumy et al. (2021), in their study entitled “Smart wearable devices in cardiovascular care: where we are and how to move forward,” highlighted the substantial potential of wearable technology in cardiology practice while also emphasizing that much of the available evidence is still derived from observational studies and technical validation. Hughes et al. (2023), through the article “Wearable Devices in Cardiovascular Medicine,” emphasized that although wearable devices promise continuous monitoring, the strength of clinical evidence remains variable and insufficient to fully support integration into medical decision making. Meanwhile, Moshawrab et al. (2023), in “Smart Wearables for the Detection of Cardiovascular Diseases: A Systematic Literature Review,” presented an initial synthesis of wearable based cardiovascular disease detection but did not explicitly assess methodological quality or the hierarchy of evidence across the analyzed studies.

These three studies indicate the existence of a significant research gap. Although the literature on cardiovascular wearable technology continues to grow, there is still no systematic review that comprehensively synthesizes empirical findings, evaluates methodological quality, and positions the results within an evidence based health practice framework. Most previous reviews tend to be descriptive, focused on technological potential, and insufficiently critical in assessing the strength of scientific evidence underlying claims of wearable device effectiveness (Hughes et al., 2023; Özsezer & Dağhan, 2025). The absence of a comprehensive evidence based synthesis carries serious practical implications. Without a clear mapping of evidence quality, healthcare professionals and policymakers risk adopting wearable technology based on market trends and technological innovation alone, rather than on robust clinical evidence. In the context of increasingly digitalized healthcare systems, this condition may lead to practices that are inconsistent with the principles of caution and evidence based medicine (Bayoumy et al., 2021; Wang et al., 2024).

Based on this background, the novelty of this study lies in offering an analytical contribution through a systematic literature review that evaluates the use of wearable technology in cardiovascular health monitoring explicitly from an evidence based perspective. This study not only synthesizes available empirical findings but also evaluates methodological quality, levels of scientific evidence, and the clinical implications of wearable device utilization. The objective of this study is to systematically analyze the effectiveness of wearable technology in cardiovascular health monitoring, identify existing evidence limitations, and map the position of wearable technology within evidence based cardiovascular healthcare practice. Unlike previous reviews that primarily emphasize technological development and application potential, this study explicitly evaluates the strength and hierarchy of scientific evidence underlying wearable technology use in cardiovascular monitoring.

METHOD

This study employs a Systematic Literature Review design with an evidence based approach to synthesize and evaluate scientific evidence related to the use of wearable technology in cardiovascular health monitoring. This approach was selected to ensure that the literature synthesis is not merely narrative in nature but also considers methodological quality and the strength of evidence from each analyzed study, as recommended in systematic review methodologies for health and technology research (Snyder, 2019; Bayoumy et al., 2021).


Data sources were obtained from internationally reputable scientific databases, namely Scopus, PubMed, Web of Science, and ScienceDirect. The selection of these databases was based on their multidisciplinary coverage and strong reputation in publishing cardiovascular health and digital medical technology research (Hughes et al., 2023; Wang et al., 2024). The search process used combinations of relevant keywords, including wearable technology, cardiovascular monitoring, heart rate, arrhythmia, heart failure, and evidence based practice. Eligible articles were peer reviewed international journal publications published within the last ten years to ensure relevance to current developments in wearable technology (Miao et al., 2022).

Inclusion criteria comprised empirical studies examining the use of wearable technology for monitoring cardiovascular parameters, based on either clinical or observational data, and reporting outcomes that could be methodologically evaluated. Studies with randomized controlled trial designs, prospective or retrospective observational studies, and device validation studies using clinical standards as comparators were included. Exclusion criteria encompassed non empirical articles such as editorials and opinion papers, studies with inadequately described methodologies, and research based on unvalidated or non reproducible data (Moshawrab et al., 2023; Özsezer & Dağhan, 2025).

The article selection process followed the Preferred Reporting Items for Systematic Reviews and Meta Analyses guidelines, including identification, screening of titles and abstracts, full text eligibility assessment, and final inclusion (Snyder, 2019). The literature search across Scopus, PubMed, Web of Science, and ScienceDirect yielded 486 articles at the initial identification stage. After deduplication and preliminary screening, 124 articles were assessed at the full text stage. Based on the established inclusion and exclusion criteria, 38 articles met methodological eligibility and were systematically analyzed in this study. Of the included articles, 21 employed randomized controlled trial or controlled clinical trial designs, including small scale and pilot controlled studies, while the remainder consisted primarily of prospective observational and device validation studies, reflecting the general characteristics of the cardiovascular wearable technology literature (Hughes et al., 2023; Scholte et al., 2024).

Data analysis was conducted through qualitative thematic synthesis by grouping findings according to monitored cardiovascular parameters, study

design, and reported clinical outcomes. Levels of evidence were classified based on study design and methodological validity, referring to evidence based medicine hierarchies in which randomized controlled trials occupy higher evidence levels than observational studies and technical validation research (Bayoumy et al., 2021; Hughes et al., 2023). To ensure the validity and reliability of the synthesis, study quality was assessed using critical appraisal principles, and findings were cross checked across studies to ensure consistency and to identify potential methodological bias (Snyder, 2019; Miao et al., 2022).

Figure 1. PRISMA Flowchart

RESULT AND DISCUSSION

Effectiveness of Wearable Technology in Monitoring Cardiovascular Parameters Based on the Strength of Clinical Evidence

The synthesis of the 38 articles analyzed in this systematic literature review indicates that the effectiveness of wearable technology in cardiovascular health monitoring cannot be understood as a single or uniform phenomenon across clinical parameters. Empirical findings demonstrate that the strength of evidence is strongly determined by the type of cardiovascular parameter being monitored, the methodological design of the studies, and the clinical context of use. Therefore, claims regarding the effectiveness of wearable technology must be interpreted critically within an evidence based medicine framework rather than solely on the basis of technological advancement (Bayoumy et al., 2021; Hughes et al., 2023).

Heart rate and heart rate variability are the parameters that most consistently demonstrate clinical effectiveness of wearable technology. The majority of large scale observational studies and controlled clinical trials report a high level of agreement between wearable derived data and clinical electrocardiography, particularly under resting conditions and during light to moderate physical activity. These findings strengthen the argument that wearable technology possesses sufficiently strong validity as a basic physiological monitoring tool, as emphasized by Bayoumy et al. and Hughes et al., who position heart rate measurement as a foundational element for

integrating wearable devices into contemporary cardiovascular practice (Bayoumy et al., 2021; Hughes et al., 2023).

However, this effectiveness declines significantly under more complex clinical conditions. Validation studies of photoplethysmography reveal that the accuracy of wearable devices decreases during high intensity physical activity, excessive limb movement, and in individuals with peripheral perfusion disorders. Alfonso et al. and Charlton et al. explicitly demonstrate that signal noise and motion artifacts remain structural limitations of current wearable technology. As a result, measurement effectiveness is highly contextual and cannot be generalized without considering technical and physiological constraints of users (Alfonso et al., 2022; Charlton et al., 2022).

In the context of arrhythmia detection, particularly atrial fibrillation, wearable technology shows substantial clinical potential, although the evidence is more heterogeneous. Several controlled clinical trials and observational studies report high sensitivity in detecting abnormal heart rhythm patterns, supporting the claim that wearable devices may function as population level screening tools. Anagnostopoulos et al., through a systematic review and Bayesian meta analysis, affirm that wearable technology can identify episodes of atrial fibrillation that were previously undetected in conventional clinical practice, especially among high risk populations (Anagnostopoulos et al., 2025; Hughes et al., 2023).

Nevertheless, the effectiveness of atrial fibrillation detection is not consistently matched by specificity across studies. Variability in algorithms, differences in monitoring duration, and heterogeneity in study populations result in varying false positive rates, which may lead to overdiagnosis and increased burden on healthcare systems. Accordingly, from an evidence based perspective, wearable technology in arrhythmia detection is more appropriately positioned as an initial screening tool that requires subsequent diagnostic confirmation, rather than as a standalone diagnostic instrument (Anagnostopoulos et al., 2025; Bayoumy et al., 2021).

The effectiveness of wearable technology in monitoring blood pressure and heart failure demonstrates relatively weaker and more inconsistent evidence. Studies evaluating noninvasive blood pressure measurement using wearable devices report wide variability when compared with standard sphygmomanometry. Vaseekaran et al. indicate that although moderate correlations exist, measurement reliability is highly influenced by body position, user activity, and device calibration processes, thereby limiting its clinical value as a primary blood pressure monitoring tool (Vaseekaran et al., 2023; Özsezer & Dağhan, 2025).

Similarly, in the context of heart failure monitoring, wearable technology exhibits benefits that are more supportive than determinative. Some controlled clinical trials report improvements in patient adherence and symptom monitoring quality, yet direct effects on reductions in hospitalization rates and mortality remain inconsistent. Jafari et al. and Scholte et al. emphasize that heterogeneity in study design and monitoring duration limits the strength of

causal inference, indicating that current evidence remains developmental and requires stronger longitudinal validation (Jafari et al., 2024; Scholte et al., 2024).

Overall, this discussion confirms that hypotheses regarding the effectiveness of wearable technology in cardiovascular health monitoring can only be accepted selectively and in a parameter specific manner. Wearable devices have proven effective for basic physiological monitoring and early screening, but they do not yet demonstrate sufficient evidentiary strength to replace conventional clinical examinations for more complex parameters. Consequently, the effectiveness of wearable technology should be understood as part of a dynamic spectrum of evidence based practice, in which technological innovation must continue to undergo rigorous methodological testing and validation before being widely integrated into cardiovascular healthcare services (Hughes et al., 2023; Wang et al., 2024).

Integration of Wearable Technology in Evidence Based Cardiovascular Care

The integration of wearable technology into evidence based cardiovascular care is inseparable from the issue of how generated data are translated into clinically meaningful information. Unlike the technical effectiveness of physiological parameter measurement, clinical integration requires a direct linkage between wearable derived data, medical decision making, and patient health outcomes. The synthesized literature indicates that the current role of wearable technology remains supportive and complementary rather than determinative in establishing diagnoses or therapeutic strategies (Bayoumy et al., 2021; Hughes et al., 2023).

Several studies emphasize that the primary contribution of wearable technology lies in its capacity for continuous monitoring, which was previously difficult to achieve through conventional healthcare delivery models. Longitudinal real time data collection allows clinicians to observe cardiovascular condition dynamics outside clinical settings, which is particularly relevant for chronic disease management. Hughes et al. and Scholte et al. demonstrate that such data continuity supports monitoring of high risk patients, although the predominance of observational designs limits causal inference regarding hard clinical outcomes (Hughes et al., 2023; Scholte et al., 2024).

In the context of early detection and screening, wearable technology demonstrates relatively stronger contributions compared to other clinical aspects. Several controlled clinical trials report that wearable device utilization increases the probability of detecting intermittent cardiac rhythm disturbances that are frequently missed by conventional examinations. Anagnostopoulos et al. affirm that integrating wearables into clinical workflows can accelerate the identification of asymptomatic atrial fibrillation, while still requiring diagnostic confirmation as part of evidence based practice (Anagnostopoulos et al., 2025; Hughes et al., 2023).

Integration of wearable technology into clinical decision support systems presents more complex challenges. Studies evaluating the use of wearable data

for therapeutic adjustment generally position clinicians as the primary interpreters of data. Moshawrab et al. and Miao et al. highlight that the absence of evidence based interpretation standards increases the risk of clinical bias and data overinterpretation, rendering the contribution of wearable devices to medical decision making largely indirect (Moshawrab et al., 2023; Miao et al., 2022).

Another aspect that appears relatively consistent in the literature is improved patient engagement and adherence. Wearable device use enhances patient awareness of health conditions and promotes self monitoring behaviors that contribute to secondary prevention and chronic disease management. However, these benefits are predominantly behavioral and cannot be automatically equated with long term improvements in clinical outcomes (Ravichandran & Mph, 2025; Yunus et al., 2025).

Based on the synthesized findings, the integration of wearable technology in evidence based cardiovascular care is more appropriately positioned at an intermediate level within the hierarchy of evidence based practice. Wearable devices expand monitoring and screening capacity, yet they currently lack sufficient evidentiary strength to replace conventional clinical practice (Bayoumy et al., 2021; Wang et al., 2024). The synthesis of wearable technology integration within evidence based cardiovascular care practice can be summarized as follows.

Table 1. Integration of Wearable Technology into Evidence-Based Cardiovascular Care

Clinical Integration Aspect	Dominant Study Design	Main Contribution	Evidence-Based Interpretation
Early detection and screening	RCT, Observational	Improved identification of atrial fibrillation and abnormal heart rhythm	Effective as screening tool, not diagnostic
Continuous cardiovascular monitoring	Observational, RCT	Longitudinal tracking of physiological trends	Moderate evidence, adjunctive role
Clinical decision support	Observational	Data supporting follow-up and therapy adjustment	Indirect contribution, clinician-dependent
Patient engagement and adherence	RCT, Observational	Increased self-monitoring and compliance	Consistent behavioral benefit

The table underscores that the dimensions of wearable technology integration with the most consistent evidentiary strength are continuous monitoring and patient engagement, whereas its contribution to clinical decision making remains limited and non determinative. The distribution of

study designs indicates that although wearable technology is increasingly integrated into cardiovascular practice, validation based on large scale clinical trials remains relatively limited. This finding reinforces the position of wearable devices as supportive instruments in evidence based cardiovascular care rather than as replacements for established clinical practice (Hughes et al., 2023; Bayoumy et al., 2021).

Methodological Limitations and Challenges in Translating Wearable Technology Evidence into Clinical Practice

Although the utilization of wearable technology in cardiovascular health monitoring demonstrates promising potential, the evidence based synthesis in this study reveals that methodological limitations remain the primary barrier to strengthening claims of its clinical effectiveness. The analyzed literature is dominated by observational studies, technical validation studies, and small scale clinical trials, while large scale randomized controlled trials with hard clinical outcomes remain relatively scarce. Bayoumy et al. (2021) and Hughes et al. (2023) emphasize that the predominance of non randomized designs limits the ability of studies to draw strong causal conclusions, resulting in wearable technology effectiveness often being inferred at the level of association rather than definitive cause and effect relationships in clinical practice.

These design limitations are further exacerbated by high methodological heterogeneity across studies. Variations in device types, data analysis algorithms, monitoring duration, and measured cardiovascular parameters produce findings that are difficult to compare directly. Moshawrab et al. (2023) and Miao et al. (2022) demonstrate that such methodological diversity hampers consistent evidence synthesis and reduces the generalizability of findings. Within an evidence based medicine framework, this condition places much of the wearable technology evidence at a moderate to low level, thereby limiting its clinical legitimacy as a primary monitoring tool.

The generalizability of research findings to broader clinical populations also represents a substantial challenge in evidence translation. Many studies are conducted in populations with specific characteristics, such as high digital literacy, strong adherence to device use, and adequate access to technology. Scholte et al. (2024) and Jafari et al. (2024) note that older adults, patients with complex comorbidities, and socioeconomically disadvantaged populations are often underrepresented in wearable technology research. This representational imbalance introduces selection bias that may constrain the application of research findings to heterogeneous real world clinical contexts.

Beyond population limitations, the long term validity of wearable data remains an unresolved issue. Most studies focus on initial device accuracy or short term validation, while evaluations of measurement stability during prolonged use are relatively rare. Nelson and Allen (2019) and Miao et al. (2022) indicate that sensor degradation, changes in user behavior, and individual physiological variability over time can influence the reliability of wearable data. In the absence of robust longitudinal evidence, claims regarding the

effectiveness of wearable technology in chronic cardiovascular disease monitoring remain tentative from an evidence based perspective.

Challenges in evidence translation also encompass ethical and data privacy dimensions. Wearable technology generates continuous, personal, and highly sensitive cardiovascular data, thereby raising risks related to data breaches, misuse of information, and ambiguity regarding health data ownership. Wang et al. (2024) and Moshawrab et al. (2023) emphasize that data protection considerations often lag behind the pace of wearable technology innovation. In clinical practice, these ethical and privacy concerns may undermine patient and clinician trust, ultimately affecting the sustainability of wearable technology implementation. The gap between technological innovation and healthcare regulatory readiness constitutes another critical structural challenge. Wearable technology development advances rapidly, whereas healthcare regulatory frameworks often struggle to keep pace with the complexity of emerging technologies. Bayoumy et al. (2021) and Chauhan et al. (2025) highlight ambiguity regarding the classification of wearable devices as medical tools or consumer products, which affects clinical validation standards, safety oversight, and legal accountability. The absence of clear regulatory guidance risks promoting technology adoption without a strong and consistent evidentiary foundation.

Overall, this discussion emphasizes that the primary challenges in utilizing wearable technology for cardiovascular health monitoring do not stem from limitations in technological innovation, but rather from methodological weaknesses and the complexity of translating evidence into real world clinical practice. Without strengthened research designs, broader population representation, long term longitudinal evaluation, and adaptive ethical and regulatory frameworks, wearable technology risks becoming technically advanced yet evidence based fragile. These findings directly address the research objectives by positioning wearable technology critically as a supportive instrument that still requires substantial scientific consolidation before widespread integration into evidence based cardiovascular practice (Hughes et al., 2023; Wang et al., 2024).

CONCLUSION

The conclusions of this study indicate that wearable technology holds strategic potential in cardiovascular health monitoring, particularly in supporting continuous monitoring and early detection based on real time data. The synthesis of this systematic literature review suggests that wearable devices are capable of providing relevant physiological information for monitoring heart rate, heart rate variability, and early screening of cardiac rhythm disturbances, thereby contributing to a shift in healthcare paradigms from reactive toward preventive approaches. However, this potential is not uniform across parameters and clinical contexts, and is highly dependent on study design, population characteristics, and conditions of device use.

From an evidence based perspective, the findings of this study confirm that the evidentiary strength supporting wearable technology in cardiovascular health monitoring remains variable and not yet fully established. The available literature is dominated by non randomized studies, observational designs, and short term technical validation, while large scale controlled clinical trials with long term outcomes remain limited. This condition restricts the ability to draw strong causal conclusions regarding the impact of wearable technology on reducing cardiovascular morbidity and mortality. Accordingly, wearable technology is more appropriately positioned as a supportive instrument that enriches monitoring data and early screening, rather than as a replacement for conventional medical examinations or a sole basis for clinical decision making.

The theoretical implications of these findings highlight the importance of strengthening evidence based frameworks in the evaluation of digital health technologies to ensure that innovation adoption does not exceed available scientific validity. Practically, the implementation of wearable technology in cardiovascular healthcare should be accompanied by clear clinical validation standards, integration into established medical care pathways, and data interpretation involving healthcare professionals to minimize bias and overdiagnosis. Furthermore, future research is recommended to focus on longitudinal clinical trials with stronger methodological designs and more representative populations to comprehensively evaluate the long term clinical impact of wearable technology on cardiovascular health outcomes. Accordingly, wearable technology should not be interpreted as a clinical endpoint or standalone diagnostic tool, but as a supportive component within an evidence-based cardiovascular care system.

REFERENCES

- Ahmad, O., Ibrahim, R., Odunsi, D., Mohammed, M., Mathew, B., Touny, M., Grewal, B., Bhanot, S., Bodapati, N., Thomas, G., Nv, S., Masood, L., & Morani, Z. (2025). Role of Mobile Health and Wearable Devices in Cardiovascular Disease Prevention: A Comprehensive Review. *Cureus*, 17. <https://doi.org/10.7759/cureus.83673>.
- Alfonso, C., Garcia-Gonzalez, M., Parrado, E., Gil-Rojas, J., Ramos-Castro, J., & Capdevila, L. (2022). Agreement between two photoplethysmography-based wearable devices for monitoring heart rate during different physical activity situations: a new analysis methodology. *Scientific Reports*, 12. <https://doi.org/10.1038/s41598-022-18356-9>.
- Anagnostopoulos, I., Vrachatis, D., Kousta, M., Giotaki, S., Katsoulou, D., Karavasilis, C., Deftereos, G., Schizas, N., Avramides, D., Giannopoulos, G., Papaioannou, T., & Deftereos, S. (2025). Wearable Devices for Quantifying Atrial Fibrillation Burden: A Systematic Review and Bayesian Meta-Analysis. *Journal of Cardiovascular Development and Disease*, 12. <https://doi.org/10.3390/jcdd12040122>.

- Bayoumy, K., Gaber, M., Elshafeey, A., Mhaimeed, O., Dineen, E., Marvel, F., Martin, S., Muse, E., Turakhia, M., Tarakji, K., & Elshazly, M. (2021). Smart wearable devices in cardiovascular care: where we are and how to move forward. *Nature Reviews Cardiology*, 18, 581 - 599. <https://doi.org/10.1038/s41569-021-00522-7>.
- Charlton, P., Kyriacou, P., Mant, J., Marozas, V., Chowienczyk, P., & Alastruey, J. (2022). Wearable Photoplethysmography for Cardiovascular Monitoring. *Proceedings of the IEEE*, 110, 355-381. <https://doi.org/10.1109/jproc.2022.3149785>.
- Chauhan, G., Vavken, P., & Jacob, C. (2025). Mobile Apps and Wearable Devices for Cardiovascular Health: Narrative Review. *JMIR mHealth and uHealth*, 13. <https://doi.org/10.2196/65782>.
- Chen, S., Qi, J., Fan, S., Qiao, Z., Yeo, J., & Lim, C. (2021). Flexible Wearable Sensors for Cardiovascular Health Monitoring. *Advanced Healthcare Materials*, 10. <https://doi.org/10.1002/adhm.202100116>.
- Hughes, A., Shandhi, M., Master, H., Dunn, J., & Brittain, E. (2023). Wearable Devices in Cardiovascular Medicine. *Circulation Research*, 132, 652 - 670. <https://doi.org/10.1161/circresaha.122.322389>.
- Jafari, N., Ghalati, S., Raberi, V., Moalemi, S., & Amin, A. (2024). Impact of Wearable Technology on Heart Failure Management. *Galen Medical Journal*, 13. <https://doi.org/10.31661/gmj.v13i.3469>.
- Khundaqji, H., Hing, W., Furness, J., & Climstein, M. (2021). Wearable technology to inform the prediction and diagnosis of cardiorespiratory events: a scoping review. *PeerJ*, 9. <https://doi.org/10.7717/peerj.12598>.
- Miao, F., Wu, D., Liu, Z., Zhang, R., Tang, M., & Li, Y. (2022). Wearable sensing, big data technology for cardiovascular healthcare: current status and future prospective. *Chinese Medical Journal*, 136, 1015 - 1025. <https://doi.org/10.1097/cm9.0000000000002117>.
- Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H., & Raad, A. (2023). Smart Wearables for the Detection of Cardiovascular Diseases: A Systematic Literature Review. *Sensors (Basel, Switzerland)*, 23. <https://doi.org/10.3390/s23020828>.
- Nelson, B., & Allen, N. (2019). Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. *JMIR mHealth and uHealth*, 7. <https://doi.org/10.2196/10828>.
- Özsezer, G., & Dağhan, Ş. (2025). Effectiveness of wearable technologies used in the monitoring of cardiovascular diseases in the community: A systematic

- review of randomized controlled trials. *Computers in biology and medicine*, 189, 110013. <https://doi.org/10.1016/j.combiomed.2025.110013>.
- Prieto-Avalos, G., Cruz-Ramos, N., Alor-Hernández, G., Sánchez-Cervantes, J., Rodríguez-Mazahua, L., & Guarneros-Nolasco, L. (2022). Wearable Devices for Physical Monitoring of Heart: A Review. *Biosensors*, 12. <https://doi.org/10.3390/bios12050292>.
- Ravichandran, A., & Mph, P. (2025). Effectiveness Of Wearable Technology In Enhancing Patient Engagement And Managing Cardiovascular Disease: A Review. *International Journal of Research Publication and Reviews*. <https://doi.org/10.55248/gengpi.6.0425.15147>.
- Romagnoli, S., Ripanti, F., Morettini, M., Burattini, L., & Sbrollini, A. (2023). Wearable and Portable Devices for Acquisition of Cardiac Signals while Practicing Sport: A Scoping Review. *Sensors (Basel, Switzerland)*, 23. <https://doi.org/10.3390/s23063350>.
- Scholte, N., Van Ravensberg, A., Shakoor, A., Boersma, E., Ronner, E., De Boer, R., Brugts, J., Bruining, N., & Van Der Boon, R. (2024). A scoping review on advancements in noninvasive wearable technology for heart failure management. *NPJ Digital Medicine*, 7. <https://doi.org/10.1038/s41746-024-01268-5>.
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. *Journal of Business Research*, 104, 333–339.
- Vaseekaran, M., Kaese, S., Görlich, D., Wiemer, M., & Samol, A. (2023). WATCH-BPM—Comparison of a WATCH-Type Blood Pressure Monitor with a Conventional Ambulatory Blood Pressure Monitor and Auscultatory Sphygmomanometry. *Sensors (Basel, Switzerland)*, 23. <https://doi.org/10.3390/s23218877>.
- Wang, Y., Zou, Y., & Li, Z. (2024). Emerging intelligent wearable devices for cardiovascular health monitoring. *Nano Today*. <https://doi.org/10.1016/j.nantod.2024.102544>.
- Yunus, M., Wahyudi, N., Aditya, R., Puriastuti, A., Alrazeeni, D., Sari, G., Septiananda, F., & Manggolono, L. (2025). Wearable technology for cardiovascular performance: A systematic review of smartwatch applications in fitness training. *Indonesian Journal of Research in Physical Education, Sport, and Health*. <https://doi.org/10.17977/um086v3i12025p45-55>.
- Zang, J., An, Q., Li, B., Zhang, Z., Gao, L., & Xue, C. (2025). A novel wearable device integrating ECG and PCG for cardiac health monitoring. *Microsystems & Nanoengineering*, 11. <https://doi.org/10.1038/s41378-024-00858-3>.

