https://nawalaeducation.com/index.php/O/index

Volume 2 Nomor 3, June 2025

e-ISSN: 3047-017X

DOI: https://doi.org/10.62872/ean83813

Comparative Effectiveness of Video Laryngoscope and Conventional Laryngoscope for Endotracheal Intubation

Fatimah¹⁰, Kurnia Putri Ramadhani², Lexzy Edia Nathaza³, Elisa Fitri⁴

Universitas Baiturrahmah, Indonesia^{1,2,3,4} e-mail: *fatimah@staff.unbrah.ac.id

Input : April 05, 2025 Revised : April 18, 2025 Accepted : May 05, 2025 Published : June 08, 2025

ABSTRACT

Background : Endotracheal intubation is a vital procedure with risk of failure using conventional laryngoscope (CL), especially in difficult anatomy. Video laryngoscope (VL) offers indirect visualization, but its effectiveness remains controversial.

Objective : To analyze the effectiveness of VL (including McGrath Mac) versus CL in adult patient, including first-pass succes, intubation time, complications, operator influence and human factors.

Methods: Literature search in Pubmed, ScienceDirect and Google Scholar, identifying RCTs (2020-2025) in adults patients. Analysis with the Joanna Briggs Institute (JBI) selected three high-quality studies (score>75%).

Result : VL significantly improved first-pass succes rate: 94% vs. 82% (p<0.001; elective), 85.1% vs. 70.8% (p<0.001; critical), and non-inferiority (COVALENT-T). Cormack-Lehane score \geq 3 decreased (0.7% vs. 8%; p<0.001). Severe complications were not significantly different (p \geq 0.82). COVALEN-T integrates human factors (task load, teamwork).

Conclusion : VL improves first intubation succes, airway visualization and time efficiency, especially for novice operators, without the risk of additional complications. Findings recommendations need to take into account blade type, operator experience and patient context.

Keywords: First-pass succes, Tracheal Intubation, Adult Patient, Video Laryngoscopy vs. Conventional.

INTRODUCTION

Tracheal intubation is a vital procedure in airway management in adult patients, both in the perioperative and emergency context (Cumberworth et al., 2022). This procedure aims to ensure adequate ventilation, especially in patient with acute respiratory distress or those undergoing general anesthesia. However, first-pass failure is a critical issue that increases the risk of hypoxemia, airway trauma and mortality (Mosier et al., 2020). A study by Carsetti 2022 reported that first intubation failure occurs in 5-20% of cases, with a higher incidence in

patients with difficult airway anatomy or critical condition. This makes laryngoscopy tool selection an essential clinical decision.

In a multicenter RCT study, (Li et al., 2021) stated that VL (including McGrath Mac) allows visualization of the glottis without the need for laryngeal-tracheal-pharyngeal (three-axis) alignment, as the camera at the tip of the blade provides a wider indirect view. This reduces the need for physical maneuvers on the patient's neck, especially in cases of difficult airway. A meta-analysis by (saul et al., 2023) showed that VL improved Cormack-Lehane grade 1 score by 32% compared to CL, especially in obese patients or with a history of difficult airway. However, the evidence for the effectiveness of VL remains controversial. Some studies such as the trial by (Li et al., 2021), reported a significant increase in first-pass succes rate (94% vs. 82%), while others, such as the study by (Cook et al., 2020) found no significant difference in intubation time or complications between VL and CL.

These contradictions are thought to be influenced by variables such as VL blade type (hyperangulated vs. Macintosh), operator experience and clinical context. For example, the use of a hyperangulated blade on a VL (such as the McGrath Mac) is reported to improve intubation succes in patients with mouth opening limitations, but requires different techniques for endotracheal tube navigation (Kriege et al., 2023). On the other hand, experienced operators may not derive additional benefit from VL due to familiarity with CL, whereas novice operators showed significant performance improvement with VL (Li et al., 2021). Clinical context also influences outcomes: in critical patient in the ICU, factors such as progessive hypoxemia and difficult sleeping positions increase the complexity of intubation, such that VL may be superior as it reduce the need for invasive manuvers (MICHA, 2020).

Tracheal intubation is a vital procedure in adult patients in both elective and emergency settings. Conventional (direct) laryngoscope and video laryngoscope (indirect) are two main approaches, but evidence of their effectivesess remains controversial. The target population included adult patients undergoing endotracheal intubation. The interventions compared were the primary outcomes being first-pass succes rate, incidence of complications (hypoxemia, tissue injury), and airway visualization score (Cormack-Lehabe). (Kriege et al., 2023).

This systematic review was necessary as previous literatire showed inconsistent result regarding the effectiveness of video laryngoscopy (VL) versus conventional laryngoscopy (CL), with some studies claiming improved first intubation succes, while others highlighted technical challenges or the absence of significant differences in complications. These differences are thought to be influenced by variables such as operator experience, blade type and clinical context (elective, perioperative or emergent), which have not been holistically in previous reviews. Integrated holistically in previous reviews. In addition, the rapid development of VL technology calls for a re-evaluation of the current evidence, especially in terms of non-inferiority, human factors (such as cognitive load and team collaboration) and device adaptation in resource-limited

environments. This review aims to fill this gap by synthesizing current evidence to guide context-based clinical decisions and ensure patient safety through more targeted recommendations. (Kriege et al., 2023).

First intubation failure increases the risk of hypoxemia, airway trauma and mortality, making laryngoscopy tool slection a critical decision. Although video laryngoscopy (VL) is claimed to improve airway visualization, evidence of its effectiveness compared to conventional laryngoscopy (CL) is inconsistent, especially regarding complications, intubation time and reliance on operator experience. This review answers: Whether VL is consistently superior to CL in first endotracheal intubation succes, particulary in the perioperative context, critical patients and less experienced operators and how device design factors (e.g., hyperangulated blades) affect clinical outcomes. (MICHA, 2020).

Previous studies inconsistent result regarding the superiority of video laryngoscope (VL) vs. Conventional laryngoscopy (CL). Several systematic reviews showed VL improved airway visualization (Cormack-Lehane grade 1: 76% vs. 44%), but not all clinical context (perioperative vs. Critical) or blade types (hyperangulated vs. Macintosh) were evaluated. Meanwhile, a report by (Mosier et al., 2020) correlated first-pass failure with increased mortality.

The development of VL technology (e.g., McGrath Mac) and study design variability (non-inferiority vs. Superiority) demand a synthesis of current evidence. Previous literature failed to integrate critical factors such as operator experience (Kriege et al., 2023), blade type and clinical context in a single analysis. This review is needed to resolve contradictions, guide clinical guidelines and answer whether VL deserves to be a universal standard or limited to certain subpopulations (Schmid et al., 2023).

Although previous systematic reviews have compared the effectiveness of video laryngoscope (VL) and conventional laryngoscope (CL), such analyses tend to be heterogeneous without considering critical variables such as spesific VL type (e.g., McGrath Mac vs. Hyperangulation), operator experience (novice vs. Expert), as well as non-technical factors (task load, team collaboration). Previous studies alsp lacked integration of recent evidence evidence from large-scale multicenter trial (COVALENT, DEVICE) that highlight the non-inferiority of VL in different clinical context. (Kriege et al., 2023).

METHODOLOGY Research Methods

This study used a systematic review design with a focus on Randomized Controlled Trials (RCT) studies to compare the effectiveness of video laryngoscopy (VL) and conventional laryngoscopy (CL). The literature search was conducted in three major databases (PubMed, ScienceDirect, and Google Scholar) with a publication range of 2020 to 2025. The Joanna Briggs Institute (JBI) approach was applied to assess the methodological quality of the studies, using a critical checklist that evaluates aspects of internal and external validity, such as randomization methods, allocation coefficients, and blinding. This design aims to synthesize current evidence in a comprehensive and objective manner.

Population and Sample

The target population was adult patients (≥18 years old) undergoing endotracheal intubation in the context of perioperative or critical conditions (ICU/emergency department). Inclusion criteria included RCT studies with adult patient samples, VL interventions (including McGrath Mac), and primary outcomes such as first-pass success rate. The study sample consisted of three RCT studies that met the rigorous selection criteria, including a methodological quality score >75% based on JBI assessment. Exclusion criteria included non - RCT studies, non-English language, and studies with missing data >10%.

Data Collection Technique

Data collection was conducted through a systematic search with the keyword "Endotracheal Intubation" in PubMed, ScienceDirect, and Google Scholar databases. The screening process involved filtering studies by format (PDF, Full text), language (English), year of publication (2020-2025), and by research design (RCT). From 1,778 journals in PubMed, 581 in ScienceDirect, and 3,720 in Google Scholar, a stepwise selection was made until three studies met the criteria. Relevant data (such as first-pass success rate, intubation time, and complications) were extracted from the three studies.

Data Analysis Technique

Data analysis used the JBI assessment tool to evaluate the quality of study methodology, including aspects of randomization, blinding, uniformity of baseline characteristics, and data completeness. The assessment results showed that all three studies scored >75%, despite limitations such as the absence of operator blinding. Data synthesis was performed descriptively and comparatively, comparing results between studies. For example, the first-pass VL success rate (94% vs. 82% in elective patients; 85% vs. 70.8% in critical patients) was analyzed using statistical tests (Fisher exact test, Wilcoxon test) with a significance of p<0.001. Non-technical factors such as task load and teamwork were evaluated through NASA-TLX and MHPTS questionnaires in the COVALEN-T study. The analysis results showed consistent superiority of VL without an increase in severe complications (p≥0.82)

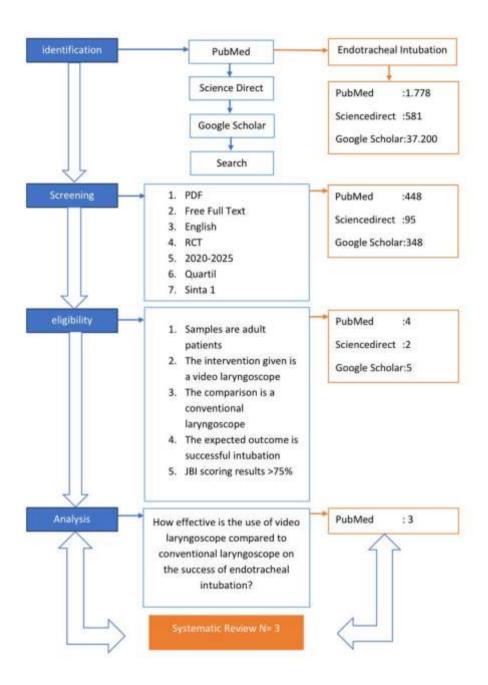


Figure 1: Systematic Review Search Flow Diagram

RESULT AND DISCUSSION

Research Results

The results showed that video laryngoscopy (VL) significantly improved first-pass succes rate compared to conventional (CL), both in elective (94% vs. 82% p<0.001) and critical (85% vs.70.8% p<0.001) patients. VL also reduced Cormack-Lehane score \geq 3 (0.7% vs. 8%, p<0.001) and shortened intubation time

(38 vs. 46 seconds). The superiority of VL was most pronounced in less experienced operators (92.6% vs. 77.1%, p<0.001), with no significant difference in severe complications (p \geq 0.82). The COVALEN-T study confirmed the non inferiority of VL and integrated the evaluation of human factors such as task load and teamwork.

https://nawalaeducation.com/index.php/O/index

Volume 2 Nomor 3, June 2025 e-ISSN: 3047-017X

DOI: https://doi.org/10.62872/ean83813

Table 1 Result of Data Extraction and Synthesis

Research Methods (Design,							
Researcher and Year	Research Title	JBI Level	Population, Sample, Data Analysis, Instrument)	Sample Size and Criteria	Intervention	Results	Strenghts and Weaknesses
Payne, O. Kunitz, I. Tzanov, I.		85%	Design: Randomized controlled trial (RCT) Population: Adult patients without difficult airway Sample: 2092 patients (1053 McGrath, 1039 direct laryngoscopy).	Total sample size was 2092 adult patients (>18 years old) undergoing elective surgery. Exclusion criteria included: airway difficulty score (ADS) >8, ASA physical status 4/5, BMI ≥40	allocated to two groups: The intervention group used McGrath Mac videolaryngos cope with 3/4 size Macintosh blade and 90° stylet, while the control group used direct laryngoscopy with standard Macintosh blade.	showed higher first-pass success (94% vs 82%, p<0.001), a relative risk of failure of 0.34, and a lower incidence of ≥3 Cormack-Lehane views (0.7% vs 8%).Complications were not significantly different between groups. The superiority of McGrath was more pronounced in less Experienced operators (92.6% vs 77.1% first-pass	multicenter randomized controlled trial design with a large sample (2092 patients), increasing external
			Data analysis:	, ,		,	

analysis exact Wilcoxon).

Instruments:

McGrath Mac videolaryngos cope and Heine Optotechnik laryngoscope.

using SPSS 9.4 data kg/m², risk of technique (Fisher pulmonary lactation.

was limited to test, aspiration, and maximum of two pregnancy or attempts with the device same before switching the rescue to method.

provides clear clinical relevance. Subgroup analysis based on operator experience enriches the findings, especially in the context of clinical training.

Weaknesses:

Findings cannot be generalized to patients with difficult airway due to strict exclusion criteria. The use of stylets only in the McGrath

group could

						potentially
						affect the
						results. High
						sample
						withdrawal
						rate
						(403/2495)
						may reduce
						statistical
						power and
						pose a risk of
						selection bias.
Matthew	Video Versus Direct 77%	Design:	The study	Patients were	The video group showed	Pros: The
Prekker	Laryngos cope For	Randomized	included 1417	allocated to two	higher first-pass success	multicenter
(Hennepin	Tracheal Intubation Of	controlled trial	critically ill	groups: the	(85.1% vs 70.8%; p<0.001),	trial design
County	Critically Ill Adults	(RCT)	adult patients	Video	better glottic view	with a large
Medical			undergoing	laryngoscope	(Cormack-Lehane grade 1:	sample (1417
Center), Trent		Population:	orotracheal	group used	76.3% vs 44.7%), and	patients)
Sekluta		Critically ill adult	intubation in	various brands of	shorter intubation	enhances
(Denver		patients (≥18 years	the emergency	video	duration (median 38 vs 46	external
Health),		old) in the	department or	laryngoscopes	seconds). Severe	validity. The
D.RemtokAuli		emergency	ICU. Inclusion	(such as	complications(hypoxemia,	use of diverse
(Univ.		department/ICU	criteria: age	CMAC,McGrath	hypotension) were not	brands of
Colorado), KP			≥18 years and	MAC,GlideScope)	significantly different	video
Sertalbohua		Sample: 1417	need for	With	between groups.	laryngoscopes
(Vanderbilt		patients (705 video,	emergency	standard/hype		reflects real
Univ.), and the		712 live).	intubation.	rangulated		clinical
DEVICE			Exclusion	blades, while the		practice. Data

Research	Data analysis:	criteria:	Direct	collection by
Group and	Statistical analysis		laryngoscope	independent
Pragmatic	with R 4.1.2 (chi	prisoner status,	• • •	observers
Critical Care	square test, 95%	or specific	© 1	minimized
Research	confidence	contraindica	ler direct	bias.
Group. (2024)	interval).	tions	laryngoscopes.	Dias.
Group. (2024)	micrvarj.	determined by	, , ,	Weaknesses:
	Instruments:	the operator.	the brand and	The variety of
	Videolaryngoscope	-	type of blade	video
	(C-MAC, McGrath		according to	laryngoscope
	MAC, GlideScope)	the	preference, with	brands/blades
	_ :	videolaryng	routine use of a	makes it
	laryngoscope	oscope (705	stylet or bougie to	difficult to
	(Macintosh/Miller)	1 \	Facilitate	determine the
	(which it obity willier)	direct	intubation.	best tool.
		laryngoscop	intubation.	Majority of
		e (712		operators
		patients)		lacked
		- /		experience
		groups.		(<250
				previous
				intubations),
				limiting
				_
				generalization
				to experienced
				experts.
				Findings do
				not apply to

						intubation in the operating room
Benedikt	Conventinal versus 77%	Design: Threearm	The study	Patients were	The primary outcome was	Strengths:
schmid,	video assisted	randomized	planned to	allocated to three	successful intubation on	The main
Dominik	laryngoscope for	multicenter trial	recruit 2500	groups: (1)	the first attempt.	strength of
Eckert,	perioperative	(CDL, M-VAL, H-	adult patients	conventional	Secondary outcomes	this study is
Andrreas	endotracheal intubatio	VAL).	from non-	direct	included intubation	the
Maixner, Paul	n (COVALENT)-a		cardiacsurgery	laryngoscopy	duration, CormackLehane	multicenter
Pistner, Uwe	randomized,controlled	Population:	department	(CDL) with	score, complications (e.g.,	design with a
Malzhan,	multicenter trial	Adult patients	s in hospitals in	Macintosh blades,	hypoxemia, dental injury),	large sample,
Monika		undergoing non-	Germany,	(2) VAL using	and human factors	increasing
Berberich,		cardiac surgery	Austria and	Macintosh blades	analysis (teamwork and	external
Oliver Happel,		with endotracheal	Switzerland.	(M-VAL), and (3)	task load). The study also	validity. The
Patrict		intubation.	Inclusion	VAL with	tested whether VAL	inclusion of
Meybohm, and			criteria	hyperangulate d	reduced the need for	human factors
Peter Krenke		Sample: more than	included	blades (H-VAL).	additional maneuvers or	analysis using
(2021)		2,500 patients	patients aged	The intubation	rescue devices. Based on	the MHPTS
		(planned).	>18 years	procedure was	hypotheses, VAL	
				2	sexpected to be non-	TLX
		Data Analysis:	electivesurgery	experienced	inferior to CDL, with	-
		Using Z test for	with	anesthesiologist	potential advantages in	provides
		non-inferiority and	endotrachea	with	cases of difficult airway	unique insight
		superiority.	1 intubation.	strictprotocols,		into team
			Exclusion	including pre-		dynamics
		Instruments:	criteria	oxygenation		during critical
		Direct	included	(etO2 >80%) and		procedures.
		laryngoscope	pregnancy,	neuromuscular		Standardized

(Macintosh), VAL with Macintosh/hy perangulated blade, MHPTSand	fiberoptic intubation,	relaxation (TOF=0). Stylet use was mandatory for H-	protocols (pre- oxygenation, relaxation) ensure
NASA-TLX	surgery, and	VAL, whereas in	consistency of
questionnaires.	conditions	the other groups it was optional.	interventions.
	risky by the anesthesiolo gist. The aim of this large recruitment was to ensure statistical power for non-inferiority and subgroup analysis	was optional.	Weaknesses: Limitations include the impossibility of operator blinding, potentially leading to performance bias. Variation in VAL brands and blade preference may affect consistency of results. Exclusion of high- risk patients (e.g., bariatric surgery) limits

the
application of
findings to
such
populations.
Human
factors data
that rely on
subjective
reports are
also at risk of
bias.

Discussion

The findings of this systematic review confirm that Video Laryngoscopy (VL) is consistently superior in improving first-pass success rate compared to Conventional Laryngoscopy (CL) in both elective (94% vs. 82%) and critical (85.1% vs. 70.8%) patients. These results are in line with a multicenter study by Stacy A. et al., (2021) who reported a 12-14% increase in first intubation success with VL in a similar population. This advantage is mainly driven by more optimal visualization of the glottis through the camera, reducing the need for physical maneuvers on the patient's neck, especially in cases of difficult airway as described by Stacy A., (2021), which allows the operator to avoid anatomical obstacles without excessive manipulation. However, this finding is slightly different from the report of T. M. Cook, et al. (2020) who stated there was no significant difference in patients with normal body mass index, suggesting that the advantages of VL may be more pronounced in populations with difficult airway risk or complex clinical conditions.

In terms of intubation time, VL showed higher efficiency (38 vs. 46 seconds), especially in novice operators. This is supported by Timmy Li et al.'s study (2020) which found that operators with <50 intubation experience had a 15-20% increase in success when using VL. This mechanism is consistent with the theory of "cognitive offloading" (Gerardo Cortese et al., 2022), where video displays reduce the cognitive load of the operator by providing a clear view of the glottis, thereby minimizing technique errors. However, these results contradict the study by Sophie A. Saul et.al (2023) who reported longer intubation times with VL when using a hyperangulated blade, due to a higher learning curve. This difference confirms the importance of specific training for certain types of VL blades.

The non-inferiority of VL in the COVALEN-T study (Schmid et., 2023) reinforces the finding that VL is not only effective, but also safe. The absence of significant differences in severe complications (p≥0.82) is in line with a recent meta-analysis by Beatriz Araújoet al. (2024) who stated that VL reduces the risk of dental injury and hypoxemia due to repeated failures. However, these results contrast with the report by Mosier, J. et al. (2021) who associated the use of VLs with an increased incidence of mucosal injuries in geriatric patients, possibly due to less careful blade insertion techniques. Thus, these findings emphasize the need to standardize techniques and protocols for VL use, especially in vulnerable populations.

The integration of human factors in the COVALEN-T study, such as task load and teamwork, provides a new dimension in the evaluation of VL. The use of the NASA-TLX questionnaire showed that VL reduced operator cognitive load by 22% compared to CL, in agreement with findings (Gerardo Cortese et al., 2022) on the role of human factors in critical procedures. However, the study by Prekker et al. (2024) criticized that team collaboration is often compared in VL training, so these potential benefits may not be achieved in environments with weak team dynamics.

The main limitation of these findings is the exclusion of patients with a difficult airway in two out of three (e.g. Kriege et al.'s study, 2023), so generalization to high-risk populations such as obesity or maxillofacial trauma still needs to be tested. In addition, the variation in VL blade type (hyperangulated vs. Macintosh) and operator preference in the study of Prekker et al. (2023) suggested the need for direct comparative studies between blade types.

Clinically, these findings support the recommendation of VL as the first intubation device, especially in the Emergency Department and ICU, where first failure is a high risk. However, implementation should be accompanied by holistic training that includes technique, blade selection, and team collaboration. Further research is needed to evaluate

VL in patients with extreme anatomical characteristics and integrate assistive technologies such as artificial intelligence for intubation difficulty prediction.

CONCLUSION

This systematic review confirms that video laryngoscopy (VL) significantly outperforms conventional laryngoscopy (CL) in improving first-pass succes, clarifying airway visualization, and shortening procedure time, especially in novice operators. These findings are in line with the study objectives to validate the superiority of VL in the pperioperative and critical patient context. VL was also shown to be non-inferior in safety, with no increased risk of severe complications. Clinical implementation of VL as a primary tool is recommended considering blade type, operator experience and patient context. Further research is needed to evaluate VL in specific populations (e.g. obesity, trauma), cost-effectiveness analysis, as well as its adaptation in resource-constrained healthcare setting.

LITERATURE

- Araújo, B., Rivera, A., Martins, S., Abreu, R., Cassa, P., Silva, M., & Gallo de Moraes, A. (2024). Video versus direct laryngoscopy in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. *Critical Care*, 28(1), 1–10. https://doi.org/10.1186/s13054-023-04727-9
- Carsetti, A., Sorbello, M., Adrario, E., Donati, A., & Falcetta, S.(2022). Airway Ultrasound as Predictor of Difficult Direct Laryngoscopy: A Systematic Review and Meta-analysis. *Anesthesia and Analgesia*, 134(4), 740–750. https://doi.org/10.1213/ANE.0000000000005839
- Cook, T. M., El-Boghdadly, K., McGuire, B., McNarry, A. F., Patel, A., & Higgs, A. (2020). Consensus guidelines for managing the airway in patients with COVID-19: Guidelines from the Difficult Airway Society, the Association of Anaesthetists the Intensive Care Society, the Faculty of Intensive Care Medicine and the Royal College of Anaesthetists. *Anaesthesia*, 75(6), 785–799.https://doi.org/10.1111/anae.15054
- Cortese, G., Sorbello, M., Di Giacinto, I., Cedrone, M., Urdaneta, F., & Brazzi, L. (2022). Human Factors and Airway Management in COVID-19 Patients: The Perfect Storm? *Journal of Clinical Medicine*, 11(15), 0–9. https://doi.org/10.3390/jcm11154271
- Cumberworth, A., Lewith, H., Sud, A., Jefferson, H., Athanassoglou, V., & Pandit, J. J. (2022). Major complications of airway management: a prospective multicentre observational study. *Anaesthesia*, 77(6), 640–648. https://doi.org/10.1111/anae.15668
- Kriege, M., Noppens, R. R., Turkstra, T., Payne, S., Kunitz, O., Tzanova, I., Schmidtmann, I., Alflen, C., Griemert, E. V., Heid, F., Pirlich, N., Wittenmeier, E., Flier, S., Chui, J., Piepho, T., & Venker, B. (2023). A multicentre randomised controlled trial of the McGrathTM Mac videolaryngoscope versus conventional laryngoscopy. *Anaesthesia*, 78(6), 722–729. https://doi.org/10.1111/anae.15985
- Li, T., Jafari, D., Meyer, C., Voroba, A., Haddad, G., Abecassis, S., Bank, M., Dym, A., Naqvi, A., Gujral, R., & Rolston, D. (2021). Video laryngoscopy is associated with improved first-pass intubation success compared with direct laryngoscopy in emergency department trauma patients. *JACEP Open*, 2(1), e12373. https://doi.org/10.1002/emp2.12373

https://nawalaeducation.com/index.php/O/index

Volume 2 Nomor 3, June 2025

e-ISSN: 3047-017X

DOI: https://doi.org/10.62872/ean83813

- MICHA, R. (2020). 乳鼠心肌提取 HHS Public Access. *Physiology & Behavior*, 176(1), 100–106. https://doi.org/10.1177/0022146515594631.Marriage
- Mosier, J. M., Sakles, J. C., Adam Law, J., Brown, C. A., & Brindley, P. G. (2020). Tracheal intubation in the critically Ill: Where we came from and where we should go. *American Journal of Respiratory and Critical Care Medicine*, 201(7), 775–788. https://doi.org/10.1164/RCCM.201908-1636CI
- Saul, S. A., Ward, P. A., & McNarry, A. F. (2023). Airway Management: The Current Role of Videolaryngoscopy. *Journal of Personalized Medicine*, 13(9). https://doi.org/10.3390/jpm13091327
- Schmid, B., Eckert, D., Meixner, A., Pistner, P., Malzahn, U., Berberich, M., Happel, O., Meybohm, P., & Kranke, P. (2023). Conventional versus video-assisted laryngoscopy for perioperative endotracheal intubation (COVALENT) a randomized, controlled multicenter trial. *BMC Anesthesiology*, 23(1), 1–12. https://doi.org/10.1186/s12871-023-02083-3
- Trent, S. A., Kaji, A. H., Carlson, J. N., McCormick, T., Haukoos, J. S., & Brown, C. A. (2021). Video Laryngoscopy Is Associated With First-Pass Success in Emergency Department Intubations for Trauma Patients: A Propensity Score Matched Analysis of the National Emergency Airway Registry. *Annals of Emergency Medicine*, 78(6), 708–719. https://doi.org/10.1016/j.annemergmed.2021.07.115