Sensing without Seizing: The Institutional Barriers to AI Adoption in Indonesian MSMEs

Authors

  • Dadet Sugiarto Faculty of Economics and Business, Budi Luhur University, Jakarta, Indonesia Author
  • Eryco Muhdaliha Faculty of Economics and Business, Budi Luhur University, Jakarta, Indonesia Author
  • Jemmy Jemmy Faculty of Economics and Business, Budi Luhur University, Jakarta, Indonesia Author
  • Selamet Riyadi Faculty of Economics and Business, Budi Luhur University, Jakarta, Indonesia Author

DOI:

https://doi.org/10.62872/e7650540

Keywords:

Dynamic Capabilities, AI Adoption, MSMEs, Institutional Voids, Gap between Sensing and Seizing, Indonesia

Abstract

Despite strong policy support, the adoption of Artificial Intelligence (AI) among Indonesian Micro, Small, and Medium Enterprises (MSMEs) remains critically low, creating a notable "digital paradox." This study investigates the "gap between sensing and seizing," defined as the disparity between awareness of AI opportunities and deployment capability. Integrating Dynamic Capabilities Theory and Institutional Theory, we examine how internal organizational capabilities intersect with contextual barriers. Utilizing an interpretivist approach based on the Gioia Methodology, data were analyzed from 28 MSMEs in the Special Region of Yogyakarta through indepth interviews, focus group discussions, and document analysis. The analysis reveals that while sensing capability is widespread, it relies heavily on informal peer networks and is constrained by a cognitive mismatch regarding the relevance of AI for small businesses. Seizing capability is hampered less by financial constraints than by weak absorptive capacity and challenges in assessing return on investment. Transforming capabilities among early adopters are incremental and highly dependent on external ecosystem support. The study concludes that this adoption gap reflects institutional voids, specifically infrastructure inequality and regulatory uncertainty, rather than a lack of entrepreneurial will. These findings refine the theoretical understanding of technology adoption in developing economies and offer strategic guidance for policymakers and technology providers.

Downloads

Download data is not yet available.

References

Akhmad, K. A., & Purnomo, S. (2021). Pengaruh Penerapan Teknologi Informasi Pada Usaha Mikro Kecil Dan Menengah Di Kota Surakarta. Sebatik, 25(1), 234–242. DOI: 10.46984/sebatik.v25i1.1293

Alghizzawi, M., Ahmed, E., Ezmigna, I., Ezmigna, A.A.R., Omeish, F. (2024). The Relationship Between Artificial Intelligence and Digital Marketing in Business Companies. In: Awwad, B. (eds) The AI Revolution: Driving Business Innovation and Research. Studies in Systems, Decision and Control, vol 525. Springer, Cham. DOI:10.1007/978-3-031-54383-8_67

Anggarini, D. T. (2022). Application of Quick Response Code Indonesian as a Payment Tool in Digitizing MSMEs. SENTRALISASI, 11(1), 1–14. DOI:10.33506/sl.v11i1.1504

Ainurrokhim, Tegar, Kiskendra Citra Hati, Naufal Daffa Adibta (2024). Digital Transformation in Small and Medium Enterprises (SMES): Challenges and Opportunities in Indonesia. Proceedings of International Conference on Management, Entrepreneurship and Business. https://prosiding.arimbi.or.id/index.php/ICMEB/article/download/40/89/357

Ardito, L., Filieri, R., Raguseo, E., & Vitari, C. (2024). Artificial Intelligence Adoption And Revenue Growth In European Smes: Synergies With Iot And Big Data Analytics. Internet Research, 34(7), 1508–1534. DOI:10.1108/INTR-02-2024-0195

Ayinaddis, S. G. (2025). Artificial Intelligence Adoption Dynamics And Knowledge In Smes And Large Firms: A Systematic Review And Bibliometric Analysis. Journal of Innovation & Knowledge, 10(3), 100682. DOI:10.1016/j.jik.2025.100682

Azizah, N. L., Indahyanti, U., Latifah, F. N., & Sumadyo, S. B. (2020). Pemanfaatan Pembukuan Digital Pada Kelompok UMKM Di Sidoarjo Sebagai Media Perencanaan Keuangan. Community Empowerment, 6(1), 64–71. DOI:10.31603/ce.4378

Badan Pusat Statistik. (2024). Profil Industri Mikro dan Kecil 2024. Jakarta: BPS-Statistics Indonesia.

Basri, W. Sh. (2020). Examining the Impact of Artificial Intelligence (AI)-Assisted Social Media Marketing on the Performance of Small and Medium Enterprises: Toward Effective Business Management in the Saudi Arabian Context. Int J Comput Intell Syst 13, 142–152. DOI:10.2991/ijcis.d.200127.002

Beyari, H., & Hashem, T. N. (2025). The Role Of Artificial Intelligence In Personalizing Social Media Marketing Strategies For Enhanced Customer Experience. Behavioral Sciences, 15(5), 700. DOI:10.3390/bs15050700

Brown, R., Mawson, S., Rocha, A., & Rowe, A. (2024). Looking Inside The 'Black Box' Of Digital Firm Scaling: An Ethnographically Informed Conceptualisation. Journal of Business Research, 186, 114987. DOI:10.1016/j.jbusres.2024.114987

Chairi, Z., Aflah, A., & Aprilyana, I. (2022). Peningkatan Produktifitas UMKM Melalui Pemanfaatan Digital Marketing Di Kelurahan Tegal Sari I Kecamatan Medan Area. E-Dimas: Jurnal Pengabdian kepada Masyarakat, 13(2), 344–350. DOI:10.26877/e-dimas.v13i2.6730

Chandra, Y. E. N., & Barry, H. (2022). Development of innovation capability model: Analysis of e-CRM and risk perceptions of Covid-19 in Bogor City MSMEs. Jurnal Manajemen dan Kewirausahaan, 10(2), 139–151. DOI:10.26905/jmdk.v10i2.8997

Chiu, Y. T., Zhu, Y. Q., & Corbett, J. (2021). In The Hearts And Minds Of Employees: A Model Of Pre-Adoptive Appraisal Toward Artificial Intelligence In Organizations. International Journal of Information Management, 60, 102379. DOI:10.1016/j.ijinfomgt.2021.102379

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152. DOI:10.2307/2393553

DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review, 48(2), 147–160. DOI:10.2307/2095101

Dinh, T. L., Vu, M., & Tran, G. T. C., (2025). Artificial intelligence in SMEs: Enhancing business functions through technologies and applications. Information, 16(5), 415. DOI:10.3390/info16050415

Drydakis, N. (2022). Artificial Intelligence in SMEs: Enhancing Business Functions Through Technologies and Applications. Inf Syst Front 24, 1223–1247 DOI:10.1007/s10796-022-10249-6

Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic Capabilities: What Are They? Strategic Management Journal, 21(10‐11), 1105–1121. www.jstor.org/stable/3094429

Gonçalves, A. R., Pinto, D. C., Jimenez, H. G., Dalmoro, M., & Mattila, A. S. (2024). Me, Myself, And My AI: How Artificial Intelligence Classification Failures Threaten Consumers' Self-Expression. Journal of Business Research, 186, 114974. DOI:10.1016/j.jbusres.2024.114974

Hansen, E. B., & Bøgh, S. (2020). Artificial Intelligence And Internet Of Things In Small And Medium-Sized Enterprises: A Survey. Journal of Manufacturing Systems, 58, 362–372. DOI:10.1016/j.jmsy.2020.08.009

Islam Taufik, S. C., Rismayanti, R., Sopian, D. R., & Dede Saputra, A. A. . (2023). The Influence Of The Development Of Artificial Intelligence Technology In The Industrial Field. Jurnal Indonesia Sosial Teknologi, 4(8), 1186–1199. DOI:10.59141/jist.v4i8.657

Jackson, I., Ivanov, D., Dolgui, A., & Namdar, J. (2024). Generative AI in Supply Chain and Operations Management: A Capability-Based Framework for Analysis and Implementation. International Journal of Production Research, 62(17), 6120–6145. DOI:10.1080/00207543.2024.2309309

Kgomo, A. A., & Lavhengwa, T. J. (2025). Artificial Intelligence Adoption for Small, Medium and Micro-sized Enterprises in Developing Countries: A Scoping Review. Journal of Information Systems Engineering and Management, 10(59s), 12982. https://jisem-journal.com/index.php/journal/article/view/12982

Khan, M. A. (2024). Understanding the Impact of Artificial Intelligence (AI) on Traditional Businesses in Indonesia. Journal of Management Studies and Development, 3(02), 146–158. DOI:10.56741/jmsd.v3i02.584

Koswara, A., & Herlina, L. (2025). The Ethical Deviations of AI in Marketing Practices: A Critical Review from Halal Perspectives . Research of Islamic Economics, 2(2), 105–116. DOI:10.58777/rie.v2i2.393

Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-Powered Marketing: What, where, and how? International Journal of Information Management, 77, 102783. DOI:10.1016/j.ijinfomgt.2024.102783

Kurniawan, R. A., Weny A. D., & Mellisa T. (2024). Penerapan Undang-Undang Perlindungan Konsumen Mengatur Tentang Transaksi Bisnis Dengan Menggunakan Artificial Inteligence. Jurnal Hukum Dan Sosial Politik, 2(2), 338–353. DOI:10.59581/jhsp-widyakarya.v2i2.2938

Xiaoqian L., Wijayaratna K., Huang Y., Qiu A. (2022). AI-Enabled Opportunities and Transformation Challenges for SMEs in the Post-pandemic Era: A Review and Research Agenda. Frontiers in Public Health, 10, 885067. DOI: 10.3389/fpubh.2022.885067

Lupiyoadi R., Muthia P., Ridho B. I., Lokhman H. U., Donard G., Kurniawan, Ahmad F. (2025). Extending UTAUT with perceived intelligence for the adoption of artificial intelligence in MSMEs and startups in Indonesia: A multi-group analysis, Journal of Open Innovation: Technology, Market, and Complexity, 11 (4) DOI:10.1016/j.joitmc.2025.100673

Nana E., Nailatun N., & Ramada S. (2025). Pengembangan Platfrom Teknologi Inovatif Untuk Efisiensi Produksi UMKM (2024). Sevaka : Hasil Kegiatan Layanan Masyarakat, 2(4), 115–127. DOI:10.62027/sevaka.v2i4.55

Nurcaya, I. N., Rahyuda, I. K., Giantari, G. A. K., & Ekawati, N. W. (2022). The Effect of Information Technology on The Performance of MSMEs During the Covid-19 Pandemic. International Journal of Social Science and Business, 6(2), 262–267. DOI:10.23887/ijssb.v6i2.44260

Oyekunle, D., & Boohene, D. (2024). Digital Transformation Potential: The Role Of Artificial Intelligence In Business. International Journal of Professional Business Review, 9(3), e04499. DOI:10.26668/businessreview/2024.v9i3.4499

Peretz-Andersson, E., Sabrina T., Patrick M., Vinit P. (2024). Artificial intelligence implementation in manufacturing SMEs: A resource orchestration approach, International Journal of Information Management, 77 DOI:10.1016/j.ijinfomgt.2024.102781

Petersson, L., Larsson, I., Nygren, J.M. et al. Challenges to implementing artificial intelligence in healthcare: a qualitative interview study with healthcare leaders in Sweden. BMC Health Serv Res 22, 850 (2022). DOI:10.1186/s12913-022-08215-8

Purnomo, S. N., & Nurchim, N. (2024). Digital transformation of MSMEs in Indonesia: A systematic literature review . Journal of Management and Digital Business, 4(2), 301–312. DOI:10.53088/jmdb.v4i2.1121

Ratmono, D., Frendy, & Zuhrohtun, Z. (2023). Digitalization in management accounting systems for urban SMEs in a developing country: A mediation model analysis. Cogent Economics & Finance, 11(2). DOI:10.1080/23322039.2023.2269773

Sari, A. C., & Adinugraha, H. H. (2022). Implementation of QRIS-Based Payments Towards the Digitalization of Indonesian MSMEs. EKONOMIKA SYARIAH : Journal of Economic Studies, 5(2), 124–139. DOI:10.30983/es.v5i2.5027

Scott, W. R. (2008). Institutions and organizations: Ideas and interests (3rd ed.). Sage Publications, Inc.

Soomro, R.B., Al-Rahmi, W.M., Dahri, N.A. et al. A SEM–ANN analysis to examine impact of artificial intelligence technologies on sustainable performance of SMEs. Sci Rep 15, 5438 (2025). DOI:10.1038/s41598-025-86464-3

Teece, D. J. (2007). Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise Performance. Strategic Management Journal, 28(13), 1319–1350. http://www.jstor.org/stable/20141992

OECD. 2019. An OECD Learning Framework 2030. In: Bast, G., Carayannis, E.G., Campbell, D.F.J. (eds) The Future of Education and Labor. Arts, Research, Innovation and Society. Springer, Cham. DOI:10.1007/978-3-030-26068-2_3

Yeni, Y., Darmaputera, M. K., & Hildayanti, S. K. (2024). Mengeksplorasi Kecerdasan Buatan pada Manajemen Pemasaran Digital Era 5.0 di Dunia UMKM. TRANSEKONOMIKA: AKUNTANSI, BISNIS DAN KEUANGAN, 4(3), 343-358. DOI:10.55047/transekonomika.v4i3.667

Downloads

Additional Files

Published

2025-12-20

How to Cite

Sensing without Seizing: The Institutional Barriers to AI Adoption in Indonesian MSMEs. (2025). Nomico, 2(11), 12-25. https://doi.org/10.62872/e7650540

Similar Articles

11-20 of 159

You may also start an advanced similarity search for this article.