

The Digital Circular Economy: Technological Innovation Strategies for Production and Consumption Efficiency

Gusti Lanang Putu Tantra¹, Ngurah Wisnu Murthi²

¹ Universitas Warmadewa, Bali, Indonesia

² Universitas Tabanan, Bali, Indonesia

Email: lanangtanra1@gmail.com

Entered : 27 January 2026
Accepted: 29 January 2026

Revised : 28 January 2026
Published : 29 January 2026

ABSTRACT

The increasing environmental and resource pressures associated with linear economic models have intensified interest in the circular economy as a pathway toward sustainable production and consumption. At the same time, rapid advances in digital technologies have transformed how economic systems operate, creating new opportunities to enhance efficiency through data-driven coordination and optimization. This study examines the digital circular economy as an integrated framework in which technological innovation strategies support both production and consumption efficiency. Using a qualitative descriptive-analytical approach with a conceptual-strategic perspective, the study analyzes academic literature, policy documents, and strategic reports on circular economy and digital innovation. The findings indicate that digital technologies play a critical role in enabling system-level efficiency by improving process optimization, reducing waste, enhancing transparency, and reshaping consumption behavior through digital platforms and feedback mechanisms. However, the study also finds that the transformative potential of the digital circular economy depends on the strategic integration of technology with circular principles, organizational practices, and governance frameworks. The research concludes that the digital circular economy offers a viable pathway toward sustainable efficiency only when digital innovation is aligned with systemic circular objectives rather than applied as isolated technological solutions

Keywords: circular economy, digital innovation, production efficiency, consumption efficiency, sustainability

INTRODUCTION

The prevailing linear economic model, characterized by the extraction of resources, mass production, consumption, and disposal, has increasingly demonstrated its structural limitations in the face of global environmental degradation and resource scarcity. Escalating material extraction, rising waste generation, and declining resource efficiency have exposed the unsustainability of linear production-consumption systems, particularly in industrialized and rapidly developing economies. In response to these challenges, the circular economy has emerged as an alternative paradigm that seeks to decouple economic growth from resource depletion by emphasizing resource efficiency, waste minimization, recycling, and the extension of product lifecycles (Liu, Liu, & Osmani, 2021; Piscicelli, 2023).

While the circular economy provides a compelling normative framework for sustainability, its practical implementation has often remained fragmented and incremental. Many circular economy initiatives focus on isolated practices such as recycling or eco-design without addressing systemic inefficiencies embedded within production and consumption processes. This gap between conceptual ambition and operational reality has limited the transformative potential of circular economy strategies, particularly in complex industrial and consumer systems where coordination,

58

information asymmetry, and behavioral inertia persist (Schöggel et al., 2022; Wynn & Jones, 2022).

Concurrently, the rapid advancement of digital technologies has profoundly reshaped economic organization, industrial production, and consumption behavior. Technologies associated with the digital economy, including artificial intelligence, big data analytics, the Internet of Things, blockchain, and digital platforms, have introduced new capabilities for real-time data collection, predictive optimization, and system-wide coordination. These technologies enable unprecedented visibility into material flows, production processes, and consumption patterns, thereby creating opportunities to address inefficiencies that have long constrained circular economy implementation (Han et al., 2023; Liu et al., 2023).

The convergence of circular economy principles and digital transformation has given rise to the concept of the digital circular economy, which positions digital technologies as strategic enablers of circularity rather than merely supportive tools. In this framework, efficiency is no longer limited to optimizing individual production stages but is reconceptualized as system-level efficiency driven by data integration, connectivity, and adaptive feedback mechanisms. Digital technologies facilitate the monitoring of resource use, the optimization of production processes, and the coordination of value chains, while simultaneously influencing consumption behavior through transparency, traceability, and digital engagement (Liu, Trevisan, Yang, & Mascarenhas, 2022; Frank et al., 2025).

Despite growing scholarly interest in both circular economy and digital innovation, the two bodies of literature have largely evolved in parallel. Research on circular economy has predominantly emphasized material cycles, regulatory instruments, and environmental outcomes, whereas studies on digital innovation have focused on productivity gains, automation, and competitive advantage. As a result, there remains a limited conceptual and strategic understanding of how digital technologies can be systematically aligned with circular economy objectives to enhance efficiency across both production and consumption domains (Kalogiannidis et al., 2022; Rejeb et al., 2025).

This separation has important implications for both theory and practice. From a theoretical standpoint, the lack of integrated frameworks constrains the ability to explain the mechanisms through which digital innovation contributes to circular efficiency. Existing studies often examine specific technologies or sectoral applications without addressing how combinations of digital strategies reshape production systems, consumption patterns, and value creation processes in a circular economy context. From a practical perspective, the absence of strategic integration risks reducing digitalization efforts to incremental efficiency improvements that reinforce linear models rather than enabling systemic transformation (Sánchez-García et al., 2023; Radhika et al., 2025).

Furthermore, efficiency in circular economy discussions is frequently confined to production-side considerations, such as waste reduction or resource optimization, while consumption-side efficiency receives comparatively limited attention. However, consumption patterns play a critical role in closing material loops, influencing product lifecycles, and determining the overall effectiveness of circular strategies. Digital platforms, data-driven services, and sharing economy models have the potential to reshape consumption behavior, enabling more sustainable use, reuse, and redistribution

of products. Without integrating consumption efficiency into circular economy strategies, the transformative impact of digital circular economy initiatives remains incomplete (Khan, Piprani, & Yu, 2022; Wilson, Kask, & Ming, 2024).

Against this backdrop, this study adopts a qualitative descriptive-analytical approach with a conceptual-strategic perspective to examine the digital circular economy as an integrated framework for enhancing production and consumption efficiency. Rather than treating digital technologies as isolated tools, the study conceptualizes them as strategic enablers that reshape economic coordination, decision-making, and resource utilization. The research seeks to bridge the gap between circular economy theory and digital innovation studies by articulating how technological strategies can support systemic efficiency and sustainability outcomes.

Accordingly, the objectives of this study are threefold. First, it aims to conceptualize the digital circular economy within a strategic framework that integrates circular principles and digital innovation. Second, it seeks to analyze how technological innovation strategies enhance production efficiency through process optimization, waste reduction, and intelligent resource management. Third, it examines the role of digital technologies in improving consumption efficiency by influencing behavior, enabling transparency, and supporting circular consumption models. Through this integrated analysis, the study contributes to a deeper theoretical and strategic understanding of the digital circular economy as a pathway toward sustainable and efficient economic systems.

METHODS

This study employs a qualitative descriptive-analytical research design with a conceptual-strategic approach to examine the digital circular economy and its role in enhancing production and consumption efficiency. A qualitative approach is appropriate because the research aims to develop an in-depth conceptual understanding of how digital technologies function as strategic enablers of circular economy practices, rather than to quantify performance outcomes. Qualitative descriptive analysis allows for systematic interpretation of concepts, strategies, and interrelations within complex socio-technical systems, which is particularly relevant for emerging and interdisciplinary topics such as digital circular economy (Sugiyono, 2019; Creswell & Poth, 2018).

The study relies on secondary data sources, including peer-reviewed academic literature on circular economy, digital innovation, and sustainability, as well as policy reports, white papers, and strategic documents issued by international organizations and research institutions. In addition, doctrinal perspectives and expert analyses in the fields of economics, technology management, and sustainable development are incorporated to strengthen the conceptual and strategic dimensions of the analysis. Data collection was conducted through a systematic literature and document review, with sources selected based on relevance, scientific credibility, and alignment with the research objectives (Sugiyono, 2019).

Data analysis was carried out through three interrelated stages. First, conceptual analysis was used to map the defining characteristics and theoretical foundations of the digital circular economy, particularly the integration of digital technologies with circular economy principles. Second, strategic analysis was applied to identify and examine technological innovation strategies that enhance efficiency in production and

consumption systems. Third, an analytical synthesis was conducted to integrate insights from multiple sources and formulate a coherent framework explaining how digital technologies enable systemic efficiency within a circular economy context. The validity of the analysis was ensured through logical coherence of arguments, traceability of theoretical and policy sources, and consistency between research objectives, methodological approach, and analytical conclusions.

RESULTS AND DISCUSSION

Conceptualizing the Digital Circular Economy as a System for Production and Consumption Efficiency

The digital circular economy can be understood as an integrated socio-technical framework in which circular economy principles are operationalized through digital technologies to enhance efficiency across production and consumption systems. Unlike conventional circular economy approaches that often focus on material recovery and waste reduction in isolation, the digital circular economy emphasizes systemic efficiency enabled by data, connectivity, and intelligent coordination. In this framework, efficiency is not merely a technical outcome but a strategic process shaped by information flows, technological integration, and adaptive decision-making (Liu, Trevisan, Yang, & Mascarenhas, 2022; Frank et al., 2025).

At the core of the digital circular economy lies a shift from material-centered optimization toward system-level optimization. Traditional efficiency strategies typically address individual stages of production or end-of-life waste management. By contrast, digital technologies enable continuous monitoring and feedback across the entire product lifecycle, from design and production to distribution, consumption, and reuse. Through real-time data collection and analytics, organizations can identify inefficiencies that are otherwise invisible in linear systems, such as underutilized assets, excessive energy consumption, or premature product obsolescence (Han et al., 2023; Liu, Song, & Liu, 2023).

Data and connectivity play a central role in enabling this transformation. Digital sensors, IoT devices, and integrated information systems generate granular data on resource use, process performance, and consumer behavior. When combined with advanced analytics and artificial intelligence, these data streams support predictive optimization, allowing firms to anticipate demand fluctuations, optimize inventory levels, and reduce material waste. As a result, efficiency becomes dynamic and adaptive rather than static and reactive, aligning economic performance with sustainability objectives (Khan, Piprani, & Yu, 2022; Wynn & Jones, 2022).

From a conceptual standpoint, the digital circular economy also redefines the relationship between production and consumption. In linear models, production efficiency and consumption efficiency are treated as separate domains. Digital circular systems, however, integrate these domains through shared data infrastructures and digital platforms. Consumption data feeds back into production decisions, enabling demand-driven manufacturing, customized product lifecycles, and service-oriented business models. This integration reduces overproduction, extends product lifespans, and supports circular strategies such as product-as-a-service and remanufacturing (Piscicelli, 2023; Rusch, Schögl, & Baumgartner, 2021).

Moreover, the digital circular economy introduces a strategic dimension to efficiency by embedding sustainability goals into organizational decision-making processes. Digital tools are not neutral technologies; they shape how value is created, measured, and distributed. When aligned with circular economy principles, digital innovation strategies can shift organizational priorities from short-term cost reduction toward long-term resource efficiency and resilience. This strategic alignment is critical for avoiding the risk that digitalization merely reinforces linear efficiency gains without addressing systemic sustainability challenges (Kalogiannidis et al., 2022; Rejeb et al., 2025).

In this sense, the digital circular economy represents a conceptual evolution rather than a simple technological upgrade. It reframes efficiency as a systemic property emerging from the interaction of technology, organization, and behavior. Understanding this conceptual foundation is essential for developing effective technological innovation strategies, particularly in the context of production systems where efficiency gains have the most immediate environmental and economic impacts.

Technological Innovation Strategies for Enhancing Production Efficiency in the Digital Circular Economy

Production efficiency is a central pillar of the digital circular economy, as manufacturing and industrial processes account for a substantial share of resource consumption and environmental impact. Digital technologies provide new strategic avenues for improving production efficiency by enabling real-time process optimization, waste reduction, and intelligent resource management. Unlike conventional efficiency measures that rely on periodic assessments and manual controls, digital innovation strategies facilitate continuous and data-driven improvements across production systems (Schögl et al., 2022; Sánchez-García et al., 2023).

One key strategy involves the deployment of Internet of Things technologies and smart sensors within production facilities. These technologies allow firms to monitor material flows, energy use, and machine performance in real time. By capturing detailed operational data, organizations can identify inefficiencies such as energy losses, equipment downtime, and material waste at an early stage. This visibility enables proactive maintenance and process adjustments, reducing resource intensity and extending the lifespan of production assets (Liu et al., 2023; Hong & Xiao, 2024).

Artificial intelligence and advanced data analytics further enhance production efficiency by enabling predictive and prescriptive decision-making. Machine learning algorithms can analyze historical and real-time data to forecast demand, optimize production schedules, and minimize inventory surplus. This capability is particularly important in circular economy contexts, where overproduction undermines resource efficiency and increases waste generation. By aligning production volumes with actual consumption patterns, digital strategies support more efficient and responsive manufacturing systems (Bhatt & Singh, 2025; Frank et al., 2025).

Automation and digital manufacturing technologies, including robotics and cyber-physical systems, also play a significant role in improving efficiency. These technologies enhance precision, reduce error rates, and optimize material usage in production processes. In a digital circular economy, automation is strategically oriented toward minimizing waste and facilitating modular design, which supports reuse, repair, and

remanufacturing. As a result, production efficiency is linked not only to output maximization but also to circular design and lifecycle considerations (Radhika et al., 2025; Rejeb et al., 2025).

Blockchain technology contributes to production efficiency by enhancing transparency and traceability within supply chains. By recording transactions and material flows on immutable ledgers, blockchain systems enable firms to verify the origin, composition, and movement of resources. This transparency supports circular practices such as closed-loop supply chains and responsible sourcing, while reducing information asymmetry and coordination costs among supply chain actors (Da Silva, 2025; Liu, Liu, & Osmani, 2021).

To synthesize these strategies, Table 1 presents key digital technologies and their strategic contributions to production efficiency within the digital circular economy.

Table 1. Digital Technologies and Their Strategic Roles in Enhancing Production Efficiency within the Digital Circular Economy

Digital Technology	Strategic Function	Contribution to Production Efficiency	Circular Economy Implication
Internet of Things (IoT)	Real-time monitoring of processes and resources	Reduction of energy use, material waste, and equipment downtime	Supports resource optimization and asset longevity
Artificial Intelligence and Data Analytics	Predictive and prescriptive decision-making	Demand-driven production and inventory optimization	Reduces overproduction and excess waste
Automation and Robotics	Precision manufacturing and process control	Improved productivity and reduced material loss	Enables modular design and remanufacturing
Blockchain	Transparency and traceability of material flows	Lower coordination costs and improved supply chain efficiency	Facilitates closed-loop and responsible sourcing
Digital Twins	Virtual simulation of production systems	Optimization of processes before physical implementation	Enhances lifecycle efficiency and system resilience

The table illustrates that production efficiency in the digital circular economy is achieved through the strategic combination of multiple digital technologies rather than the isolated application of individual tools. Each technology contributes distinct capabilities, but their collective integration enables systemic efficiency gains that align production processes with circular economy objectives. Importantly, these strategies demonstrate that production efficiency is not merely a technical outcome but a strategic process shaped by digital innovation, organizational alignment, and sustainability-oriented decision-making.

The Role of Digital Technologies in Enhancing Consumption and Distribution Efficiency within the Digital Circular Economy

While production efficiency is often positioned as the primary focus of circular economy strategies, consumption and distribution efficiency are equally critical for achieving systemic circularity. In linear economic systems, consumption is typically treated as an end-point characterized by ownership, disposability, and limited feedback to producers. The digital circular economy fundamentally reconfigures this logic by leveraging digital technologies to transform consumption patterns, distribution mechanisms, and user engagement into active components of circular value creation (Piscicelli, 2023; Khan, Piprani, & Yu, 2022).

Digital technologies enable greater transparency and traceability across distribution networks, allowing consumers, producers, and intermediaries to access information about product origin, environmental impact, and lifecycle characteristics. Blockchain-based tracking systems, digital product passports, and real-time logistics platforms reduce information asymmetry between producers and consumers. This transparency enhances trust and supports informed consumption decisions, which are essential for improving consumption efficiency in circular systems (Da Silva, 2025; Sánchez-García et al., 2023). When consumers are able to evaluate sustainability attributes, products are more likely to be used responsibly, reused, or returned into circular loops rather than prematurely discarded.

Digital platforms also play a central role in reshaping consumption behavior by enabling new access-based and service-oriented business models. Platforms supporting sharing, renting, resale, and product-as-a-service models reduce the need for individual ownership and increase asset utilization rates. From a circular economy perspective, higher utilization directly translates into improved consumption efficiency, as fewer resources are required to deliver the same level of utility. These digitally enabled models shift value creation from volume-based sales toward performance and longevity, aligning economic incentives with circular objectives (Rusch, Schögl, & Baumgartner, 2021; Williams et al., 2024).

In addition to enabling alternative consumption models, digital technologies facilitate continuous feedback between users and producers. Data generated through digital interfaces, smart products, and connected platforms provide insights into usage patterns, product performance, and consumer preferences. This feedback loop allows producers to adapt product design, maintenance strategies, and distribution systems in response to actual consumption behavior. As a result, consumption efficiency is no longer a static outcome but an evolving process informed by real-world data and user interaction (Han et al., 2023; Liu, Trevisan, Yang, & Mascarenhas, 2022).

Digitalization of distribution systems further enhances efficiency by optimizing logistics, reducing emissions, and minimizing waste associated with transportation and storage. Advanced analytics and AI-driven routing systems enable dynamic optimization of delivery routes, inventory placement, and reverse logistics. These capabilities are particularly important for circular economy operations, which require efficient collection, redistribution, and reintegration of products and materials. Without digitally enabled distribution systems, circular consumption models such as reuse and remanufacturing face significant operational barriers (Hong & Xiao, 2024; Liu et al., 2023).

Behavioral change is another critical dimension of consumption efficiency in the digital circular economy. Digital technologies influence consumer behavior through

nudging mechanisms, personalized information, and real-time feedback on environmental impact. Mobile applications, dashboards, and digital labels can inform users about resource use, carbon footprints, and circular alternatives, thereby encouraging more sustainable consumption choices. While behavioral change alone is insufficient to achieve circularity, its integration with technological and organizational strategies strengthens the overall effectiveness of digital circular economy initiatives (Wilson, Kask, & Ming, 2024; Wynn & Jones, 2022).

However, the reliance on digital technologies for consumption efficiency also introduces strategic challenges. Digital divides, unequal access to platforms, and concerns over data privacy may limit participation and exacerbate inequalities. Moreover, without appropriate governance frameworks, digital platforms risk reinforcing consumption growth rather than reducing resource use, for example by stimulating demand through convenience and personalization. These risks highlight the need for strategic alignment between digital innovation, circular objectives, and regulatory oversight to ensure that consumption efficiency contributes to sustainability rather than undermining it (Rejeb et al., 2025; Piscicelli, 2023).

Overall, digital technologies play a transformative role in enhancing consumption and distribution efficiency by redefining how products are accessed, used, and circulated within the economy. In the digital circular economy, consumption is no longer a terminal phase but an integral part of a data-driven, feedback-oriented system that supports resource efficiency and sustainability. The effectiveness of this transformation depends on the strategic integration of digital platforms, behavioral insights, and governance mechanisms that collectively enable circular consumption practices at scale.

CONCLUSIONS

This study demonstrates that the digital circular economy constitutes a strategic framework for addressing structural inefficiencies inherent in linear production and consumption systems. By integrating circular economy principles with digital technologies such as data analytics, artificial intelligence, the Internet of Things, blockchain, and digital platforms, efficiency is reconceptualized as a system-level outcome rather than a fragmented technical improvement. The analysis shows that digital technologies enable real-time monitoring, feedback-driven optimization, and enhanced coordination across production and consumption stages, thereby supporting waste reduction, resource optimization, and extended product lifecycles.

However, the effectiveness of the digital circular economy depends on strategic integration rather than isolated technological adoption. Digital innovation can enhance production efficiency through intelligent process optimization and resource management, while simultaneously reshaping consumption efficiency by enabling transparency, alternative consumption models, and behavioral feedback mechanisms. Without a coherent conceptual and strategic alignment, digitalization risks reinforcing linear efficiency gains instead of enabling circular transformation. This finding highlights that technology alone is insufficient; organizational strategies, governance frameworks, and sustainability-oriented decision-making are equally critical in realizing circular efficiency outcomes.

Based on these findings, policymakers are encouraged to develop innovation and sustainability policies that explicitly integrate digital transformation with circular economy objectives. Industry actors should adopt digital strategies that prioritize

lifecycle efficiency, system integration, and circular value creation rather than short-term productivity gains. For future research, empirical studies and comparative analyses across sectors and regions are recommended to validate and refine the conceptual framework of the digital circular economy, particularly in assessing its long-term impacts on resource efficiency and sustainable consumption patterns.

REFERENCE

Benny, R., & Rajiv, S. (2025). Application of Digital Technologies for Sustainable Product Management in a Circular Economy. *INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT.* <https://doi.org/10.55041/ijssrem44692>.

Bhatt, J., & Singh, S. (2025). Sustainable Innovation through Digital Transformation: Leveraging AI for Circular Economy Models. *International Journal of Advanced Research in Science, Communication and Technology.* <https://doi.org/10.48175/ijarsct-24869>.

Da Silva, E. (2025). DIGITAL CIRCULAR ECONOMY: BLOCKCHAIN, IOT, AND AI FOR TRACEABILITY AND EFFICIENCY. *Revista ft.* <https://doi.org/10.69849/revistaft/ra10202509071652>.

Frank, A., Batista, L., Chaudhuri, A., Subramaniam, N., Subramanian, A., Dora, M., & Ritala, P. (2025). Circular Economy and Digital Technology-Enabled Innovation: Advances, Applications and Prospects. *R&D Management*, 55. <https://doi.org/10.1111/radm.70003>.

Han, Y., Shevchenko, T., Yannou, B., Ranjbari, M., Esfandabadi, Z., Saidani, M., Bouillass, G., Blumska-Danko, K., & Li, G. (2023). Exploring How Digital Technologies Enable a Circular Economy of Products. *Sustainability.* <https://doi.org/10.3390/su15032067>.

Hong, Z., & Xiao, K. (2024). Digital economy structuring for sustainable development: the role of blockchain and artificial intelligence in improving supply chain and reducing negative environmental impacts. *Scientific Reports*, 14. <https://doi.org/10.1038/s41598-024-53760-3>.

Kalogiannidis, S., Kalfas, D., Chatzitheodoridis, F., & Kontsas, S. (2022). The Impact of Digitalization in Supporting the Performance of Circular Economy: A Case Study of Greece. *Journal of Risk and Financial Management.* <https://doi.org/10.3390/jrfm15080349>.

Khan, S., Piprani, A., & Yu, Z. (2022). Digital technology and circular economy practices: future of supply chains. *Operations Management Research*, 1-13. <https://doi.org/10.1007/s12063-021-00247-3>.

Liu, L., Song, W., & Liu, Y. (2023). Leveraging digital capabilities toward a circular economy: Reinforcing sustainable supply chain management with Industry 4.0 technologies. *Comput. Ind. Eng.*, 178, 109113. <https://doi.org/10.1016/j.cie.2023.109113>.

Liu, Q., Trevisan, A., Yang, M., & Mascarenhas, J. (2022). A framework of digital technologies for the circular economy: Digital functions and mechanisms. *Business Strategy and the Environment.* <https://doi.org/10.1002/bse.3015>.

Liu, Z., Liu, J., & Osmani, M. (2021). Integration of Digital Economy and Circular Economy: Current Status and Future Directions. *Sustainability.* <https://doi.org/10.3390/su13137217>.

Piscicelli, L. (2023). The sustainability impact of a digital circular economy. *Current Opinion in Environmental Sustainability.* <https://doi.org/10.1016/j.cosust.2022.101251>.

Radhika, K., Uthaman, V., Murgai, A., Dnyaneshwar, D., Singh, A., & Borah, S. (2025). Driving Circular Economy Strategies Through Digital Transformation and Emerging Technologies. *Journal of Information Systems Engineering and Management*. <https://doi.org/10.52783/jisem.v10i30s.4939>.

Rejeb, A., Rejeb, K., Keogh, J., & Süle, E. (2025). When Industry 5.0 Meets the Circular Economy: A Systematic Literature Review. *Circular Economy and Sustainability*, 5, 2621 - 2652. <https://doi.org/10.1007/s43615-025-00570-y>.

Rusch, M., Schöggel, J., & Baumgartner, R. (2021). Application of digital technologies for sustainable product management in a circular economy – a review. *Business Strategy and the Environment*. <https://doi.org/10.31235/osf.io/twgks>.

Sánchez-García, E., Martínez-Falcó, J., Marco-Lajara, B., & Manresa-Marhuenda, E. (2023). Revolutionizing the circular economy through new technologies: A new era of sustainable progress. *Environmental Technology & Innovation*. <https://doi.org/10.1016/j.eti.2023.103509>.

Schöggel, J., Rusch, M., Stumpf, L., & Baumgartner, R. (2022). Implementation of digital technologies for a circular economy and sustainability management in the manufacturing sector. *Sustainable Production and Consumption*. <https://doi.org/10.1016/j.spc.2022.11.012>.

Sugiyono. 2019. Metode Penelitian & Pengembangan. Alfabeta

Williams, J., Prawiyogi, A., Rodriguez, M., & Kovac, I. (2024). Enhancing Circular Economy with Digital Technologies: A PLS-SEM Approach. *International Transactions on Education Technology (ITEE)*. <https://doi.org/10.33050/itee.v2i2.590>.

Wilson, A., Kask, R., & Ming, L. (2024). Exploring Circular Digital Economy Strategies for Sustainable Environmental, Economic, and Educational Technology. *International Transactions on Education Technology (ITEE)*. <https://doi.org/10.33050/itee.v2i2.579>.

Wynn, M., & Jones, P. (2022). Digital Technology Deployment and the Circular Economy. *Sustainability*. <https://doi.org/10.3390/su14159077>.