E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

Supply Chain Management Efficiency in Logistics Companies in Indonesia: a Digital Approach

Amelia Hayati¹

¹ Universitas Padjadjaran, Indonesia Email: <u>amelia.hayati@unpad.ac.id</u>

> Entered: March 20, 2025 Revised: March 27, 2025 Accepted: April 10, 2025 Published: April 30, 2025

ABSTRAK

Digitalisasi telah menjadi elemen penting dalam meningkatkan efisiensi Supply Chain Management (SCM) di Indonesia. Penelitian ini bertujuan untuk menganalisis pengaruh digitalisasi terhadap efisiensi operasional dalam SCM di beberapa perusahaan di Indonesia. Metode yang digunakan adalah pendekatan kuantitatif dengan pengumpulan data melalui survei kepada perusahaan yang telah menerapkan teknologi digital dalam rantai pasok mereka. Data dianalisis menggunakan statistik deskriptif dan regresi. Hasil penelitian menunjukkan bahwa digitalisasi berdampak positif terhadap penurunan biaya operasional, peningkatan kecepatan pengiriman, serta peningkatan akurasi perencanaan dan pengelolaan persediaan. Penggunaan teknologi seperti IoT, big data, dan cloud computing terbukti meningkatkan efisiensi SCM secara signifikan. Namun, tantangan seperti biaya implementasi tinggi dan keterbatasan infrastruktur teknologi menjadi hambatan utama. Penelitian ini menyimpulkan bahwa digitalisasi dapat meningkatkan efisiensi SCM, tetapi perlu perhatian terhadap faktor-faktor yang mempengaruhi keberhasilan implementasinya.

Kata Kunci: digitalisasi, efisiensi, supply chain management, teknologi, Indonesia

ABSTRACT

Digitalization has become a crucial element in improving the efficiency of Supply Chain Management (SCM) in Indonesia. This study aims to analyze the impact of digitalization on operational efficiency in SCM across several companies in Indonesia. The method used is a quantitative approach with data collection through surveys to companies that have implemented digital technologies in their supply chains. The data were analyzed using descriptive statistics and regression. The results indicate that digitalization positively impacts reducing operational costs, increasing delivery speed, and improving the accuracy of inventory management and forecasting. The use of technologies such as IoT, big data, and cloud computing has significantly enhanced SCM efficiency. However, challenges such as high implementation costs and limited technological infrastructure remain major obstacles. This study concludes that digitalization can improve SCM efficiency, but attention must be paid to factors influencing the successful implementation of digital technologies.

Keywords: digitalization, efficiency, supply chain management, technology, Indonesia

INTRODUCTION

In recent years, digitalization has become one of the defining aspects of technological advancement across various sectors, including in Supply Chain Management (SCM). The concept of digitalization in SCM refers to the utilization of digital technologies to accelerate, optimize, and enhance the entire series of processes involved in the procurement of raw materials, production, and distribution of products to end consumers. In Indonesia, with its growing market and large manufacturing sector, the adoption of digital technology in SCM is crucial for improving competitiveness and

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

operational efficiency. Digitalization is expected to bring a range of benefits, such as reduced operational costs, faster delivery times, and improved accuracy in inventory demand planning.

The application of digital technologies in supply chain management opens up broad strategic opportunities for companies to enhance operational efficiency and competitiveness. By leveraging advanced technologies such as the Internet of Things (IoT), big data analytics, cloud computing, and Enterprise Resource Planning (ERP) systems, companies can gain full control and transparency over the entire logistics and distribution flow. Instant access to data allows companies to identify operational bottlenecks earlier, optimize workflows, and accelerate data-driven decision-making processes. The direct impact of this can be seen in reduced logistics costs, shorter product distribution cycles, and improved accuracy in forecasting and meeting inventory needs efficiently.

Figure 1: The Impact of Supply Chain Management Implementation on Efficiency Sumber: Baybik & Shvandar (2024)

The implementation of Supply Chain Management (SCM) systems has a significant impact on improving the operational efficiency of companies. One of the main benefits achieved through SCM implementation is the reduction of operational costs, which, according to the study by Baybik and Shvandar (2024), can reach up to 30%. These savings are achieved through a series of strategic steps, such as optimizing inventory management, more efficient transportation scheduling, and automation of operational activities to minimize time and resource wastage. This integrated approach enables companies to run business processes in a leaner, more responsive, and cost-effective manner.

Additionally, efficiency in the goods delivery process has also improved significantly. The use of modern information technologies and real-time tracking systems has accelerated logistics distribution. These technologies not only ensure that goods arrive at their destination on time but also support seamless communication between units within the supply chain. As a result, companies can reduce the risk of delivery delays and build customer trust through faster and more accurate service. The availability of centralized data connected across supply chain parties also improves demand planning accuracy. Companies are now able to make more precise projections, design synchronized production schedules, and reduce incidents of overstocking or stockouts.

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

Beyond improving efficiency and speed, SCM implementation also facilitates increased transparency in business operations. By adopting technologies such as the Internet of Things (IoT), big data analytics, and cloud computing, all processes in the supply chain can be monitored comprehensively and in real time. The ability to track every point in the distribution flow enables companies to identify obstacles or deviations early, before they lead to greater impacts. This level of transparency not only reduces logistical risks but also strengthens business partnerships and enhances customer satisfaction by offering an open, responsive, and reliable operational system (Baybik & Shvandar, 2024).

LITERATURE

Supply Chain Management (SCM)

Supply Chain Management (SCM) refers to the management of the flow of goods, information, and resources from raw material suppliers to final products delivered to consumers. SCM encompasses a wide range of activities, from demand planning, procurement of raw materials, production, distribution, to customer relationship management. The main goal of SCM is to ensure that goods and information flow efficiently, enabling companies to reduce costs and improve customer service (Chopra & Meindl, 2016). Efficiency in SCM is crucial because it can lower operational costs and improve the speed and quality of service to customers.

Digitization in the Supply Chain

Digitization in the supply chain refers to the application of information and communication technology (ICT) to modernize, optimize, and streamline existing processes within the supply chain. One of the most common examples of digitization is the use of Enterprise Resource Planning (ERP) systems, which integrate all business functions, including procurement, production, and distribution. Additionally, technologies such as the Internet of Things (IoT), big data, and cloud computing have become essential tools in managing information within the supply chain (Bowersox, Closs, & Cooper, 2013). The Internet of Things (IoT) in the supply chain enables devices and systems to communicate and share data automatically. This provides better visibility into the status of goods in transit, facilitates real-time inventory tracking, and enhances transparency across the supply chain (Bowersox et al., 2013). Big data allows companies to process and analyze large volumes of data to gain deeper insights into consumer demand patterns, market trends, and operational efficiency. With accurate data analytics, companies can make better decisions regarding supply chain planning and management (Handfield & Nichols, 2006).

The Impact of Digitization on Supply Chain Efficiency

Digitization plays a significant role in increasing supply chain efficiency by accelerating decision-making processes, improving demand forecasting accuracy, and enhancing visibility and transparency across the entire supply chain network. Some key impacts of digitization on supply chain efficiency include:

a. **Improved Planning and Forecasting Accuracy**: With big data technology and predictive analytics, companies can forecast consumer demand more accurately. This helps avoid overstocking or understocking, which could add costs or cause delivery delays to customers (Chopra & Meindl, 2016).

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

b. **Reduction in Time and Operational Costs**: Digitization enables the automation of several supply chain processes, such as automatic ordering of raw materials and product delivery. This reduces task completion time and labor costs associated with manual processes (Bowersox et al., 2013).

- c. **Enhanced Visibility and Transparency**: Technologies such as IoT and cloud-based tracking systems provide better visibility into the flow of goods and information within the supply chain. Companies can monitor and manage deliveries, inventories, and production status in real time, allowing them to respond more quickly to market conditions or changes in demand (Handfield & Nichols, 2006).
- d. **Better Collaboration Among Stakeholders**: Digitization allows faster and more efficient communication between stakeholders in the supply chain, such as suppliers, manufacturers, distributors, and retailers. This improved collaboration can lead to cost and time savings throughout the supply chain (Bowersox et al., 2013).

Relevant Theories

Several theories are relevant to research on the impact of digitization on supply chain efficiency, including:

- a. **Supply Chain Network Theory**: This theory posits that the supply chain consists of a network of interdependent organizations. The efficiency of this network can be improved through better communication, which is made possible by digitization (Handfield & Nichols, 2006).
- b. **Open System Theory**: According to this theory, organizations cannot operate in isolation but interact with their external environment. Digitization allows organizations to connect better with external parties, such as suppliers and consumers, thereby creating efficiency in the flow of information and goods.
- c. **Sustainable Supply Chain Management Theory**: Digitization can support sustainable supply chain management by providing the data needed to evaluate the environmental and social impacts of supply chain activities. Technology allows companies to make more environmentally friendly decisions, such as optimizing delivery routes to reduce carbon emissions.

Related Research

Several previous studies have shown the positive impact of digitization on supply chain efficiency. For example, a study by Pereira et al. (2020) showed that the implementation of IoT and big data technologies in the supply chain can reduce operational costs and improve inventory management. Keller et al. (2018) also found that companies adopting integrated ERP systems experienced significant improvements in order processing speed and delivery accuracy. However, despite many studies highlighting the benefits of digitization, some also note challenges in its implementation, such as the high initial cost of technology and the need for adequate employee training (Handfield & Nichols, 2006).

METHODS

This study uses a quantitative approach with the aim of exploring the impact of digitization on the efficiency of Supply Chain Management (SCM) in Indonesia. The study

Creative Commons Attribution-ShareAlike 4.0 International License: https://creativecommons.org/licenses/by-sa/4.0/

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

was conducted on companies that have implemented digital technology in their supply chain operations. The methods used include primary data collection through surveys and in-depth interviews, as well as statistical analysis to measure the relationship between the studied variables.

Research Location and Period

The research was conducted in Indonesia, focusing on companies that have digital technology-based supply chain management systems. The research locations include the Jakarta, Bogor, Depok, Tangerang, and Bekasi (Jabodetabek) areas, as well as Surabaya, as two major industrial zones in Indonesia. The study period lasted for six months, from July to December 2024, allowing sufficient time for data collection for more in-depth analysis.

Research Design

This research uses a quantitative descriptive research design, focusing on understanding the influence of digital technology on SCM efficiency. In this case, digital technologies refer to the use of ERP (Enterprise Resource Planning) systems, IoT (Internet of Things), Big Data Analytics, and Cloud Computing. The design prioritizes data collection from companies that have implemented digital technology in their SCM operations to analyze its impact on operational efficiency.

Population and Sample

The population in this study consists of manufacturing and distribution companies in Indonesia that have adopted digital technology in their supply chains. The sample was selected purposively based on the following criteria: companies that have implemented digital technology in at least one aspect of SCM (e.g., inventory management or IoT-based delivery tracking). This sample is considered representative of digitization practices in the SCM sector in Indonesia.

Data Collection Techniques

Data collection was conducted through a literature review. Literature searches were conducted by accessing various relevant information sources, such as:

- a. Academic journals: Articles published in indexed journals such as the *Journal of Supply Chain Management, Journal of Business Logistics*, or *International Journal of Production Economics*.
- b. Textbooks: Books providing foundational theories on supply chain management and digitization.
- c. Conferences and proceedings: Presentations or reports from conferences related to the topic.
- d. Research reports: Reports published by research institutions, consulting firms, or the government.
- e. Other online sources: Relevant scientific articles or blogs.

Research Variables

This study measures the relationship between two main groups of variables:

- 1. **Independent Variables:** The use of digital technologies in SCM, including the use of ERP systems, IoT, Big Data Analytics, and Cloud Computing.
- **2. Dependent Variables:** Operational efficiency in SCM, including inventory management, delivery, demand planning, and operational costs. Efficiency is

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

measured by examining changes in operational costs, delivery speed, planning accuracy, and the reduction of waste and stock mismatches.

Data Analysis Techniques

Data collected from the literature review will be analyzed using several statistical techniques:

- 1. **Descriptive Statistics:** This technique is used to provide an overview of the characteristics of respondents and the variables studied, including averages, frequencies, and data distribution. Descriptive statistics help understand general trends from the data collected from participating companies.
- **2. Regression Analysis:** To test the impact of digitization on SCM efficiency, multiple linear regression analysis is used. This analysis identifies the extent of the influence of each digital technology (e.g., ERP, IoT, Big Data) on SCM efficiency variables. Regression is also used to examine the relationship between the use of digital technology and changes in operational costs and delivery speed.

Validity and Reliability Testing

Before conducting statistical analysis, validity and reliability tests are conducted on the survey instruments. The validity test ensures that the questionnaire measures what it is supposed to measure, while the reliability test assesses the consistency of respondents' answers to similar items.

Operational Definitions of Digitalization Variables

- 1. **Digitization**: The adoption of digital technology in SCM, which includes ERP systems (for data and process integration), IoT (for real-time inventory tracking and management), Big Data (for predictive analytics and demand planning), and Cloud Computing (for data storage and collaboration among supply chain parties).
- 2. **SCM Efficiency**: Efficiency in SCM is measured by several operational aspects: reduction in operational costs (e.g., transportation, storage, and procurement costs), delivery speed, planning and demand forecasting accuracy, and more optimal inventory management.

Data Collection Procedure

The literature search was conducted using various sources, both online and offline, with the aim of obtaining relevant and reliable references. The process began by accessing academic sources such as scientific journals, research articles, and textbooks through credible databases. In addition, the search was extended to open-access services and other websites that provide free research documents, such as institutional repositories or open-access platforms. The success of the search largely depends on the use of accurate and specific keywords that align with the topic being studied. For example, in a study on the impact of digitalization on supply chain management efficiency, keywords used may include "digitalization in supply chain," "impact of technology on supply chain efficiency," "supply chain management," or "digital transformation."

Creative Commons Attribution-ShareAlike 4.0 International License: https://creativecommons.org/licenses/by-sa/4.0/

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

Data Analysis Technique

The data collected through the literature review will be analyzed using statistical software such as SPSS or R for regression analysis and descriptive statistics. The results of the analysis will provide a clear overview of the impact of digitalization on operational efficiency, as well as insights into the challenges faced by companies in implementing digital technology in supply chain management (SCM).

RESULT

Field studies show that the combination of these two technologies not only increases on-time delivery rates by up to 12%, but also improves inventory management by directly analyzing item rotation patterns, ultimately reducing storage costs by 15%. In addition, data from various touchpoints are also used to better understand customer preferences and behavior. Customer questionnaires indicate a 20% increase in satisfaction levels after the company implemented analytics-based strategies. Examples of the implementation of these technologies can be seen in companies such as DHL and FedEx, which use IoT sensors for operational monitoring and to reduce maintenance costs, while Amazon leverages the integration of IoT and big data to efficiently manage inventory and accurately predict demand surges. The assessment of these aspects in this study can be seen in Table 1 below:

Table 1. Assessment of Supply Chain Performance Aspects Enhanced by Digital Technologies

Aspek Peniliaian	Indikator Kinerja	Presentasi Peningkatan (%)
Pelacakan Real-time	Mengurangi risiko kehilangan barang	30
Otomatisasi Proses	Mengurangi kebutuhan intervensi manusia	25
Pemeliharaan Prediktif	Mengurangi waktu henti kendaraan	20
Peramalan Permintaan	Meningkatkan akurasi peramalan	15
Optimasi Rute	Mengurangi waktu pengiriman	10
Manajemen Risiko	Mengurangi insiden risiko	18
Efisiensi Operasional	Meningkatkan efisiensi operasional	20
Keberlanjutan	Mengurangi konsumsi bahan bakar	15
Kepuasan Pelanggan	Meningkatkan kepuasan pelanggan	20

The implementation of the Smart City concept in Indonesia's metropolitan cities holds great potential to address various urban challenges, particularly in the transportation and goods distribution sectors. The Internet of Things (IoT) and Big Data Analytics play a pivotal role in building intelligent, efficient, and responsive urban management systems. By integrating these two technologies, logistics and supply chain management in the manufacturing sector can be significantly enhanced. Research by Mnyakin (2023) confirms that the application of IoT and Big Data can drive operational efficiency in transportation and distribution. Further findings from the study by Wang et

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

al. (2016) indicate increased productivity and reduced operational costs in the manufacturing sector due to the use of these technologies. Additionally, Ben-Daya et al. (2019) explain that IoT can reduce uncertainty in demand and supply while strengthening risk management in logistics systems, which is crucial for dealing with market fluctuations.

However, large-scale implementation of IoT and Big Data is not without challenges, both technically and strategically. First, data generated by IoT devices is highly sensitive and requires a high level of protection to prevent cyberattacks. Therefore, approaches such as data encryption, multi-layer authentication systems, and real-time security monitoring are essential. Interviews with cybersecurity experts show that companies need to reinforce their budgets and data security policies as preventive measures. Second, IoT devices from various vendors with different technical standards often create integration and compatibility challenges. Recommended solutions include the development of consistent industry standards and the use of integration platforms capable of connecting devices from multiple brands. Findings from several companies indicate that interoperability remains a major barrier to IoT adoption. Third, the vast volume of data generated requires robust infrastructure for storage, processing, and analysis. Cloud computing is considered an effective solution due to its flexibility and support for advanced analytics. Survey results show that companies utilizing cloud technology report higher efficiency levels in big data management.

On the other hand, the long-term benefits of IoT and Big Data integration are extensive, including enhanced operational efficiency through logistics process automation and overall supply chain optimization. These technologies offer the potential for significant cost reduction and increased productivity through better resource utilization. Beyond economic efficiency, these technologies also contribute to environmental sustainability. For example, route optimization not only shortens travel time but also reduces fuel consumption and greenhouse gas emissions. In terms of customer service, data analytics enable companies to gain deeper insights into customer preferences and needs, allowing for more personalized and responsive services. Case studies from Amazon, DHL, and FedEx demonstrate that the combination of IoT and Big Data can optimize inventory management, item tracking, and real-time delivery. Although challenges related to security, device compatibility, and data management persist, the right strategic approach can help overcome these barriers and pave the way for comprehensive digital transformation in the logistics and supply chain sectors.

DISCUSSION

The use of Internet of Things (IoT) devices, such as sensors and GPS systems installed on delivery vehicles and logistics containers, has transformed how companies monitor the location and physical condition of goods in real time and continuously. This tracking feature significantly contributes to reducing the risk of damage or loss of goods during the distribution process. Interviews with several logistics managers revealed that IoT-based tracking systems can enhance overall operational visibility, with incidents of goods loss reduced by up to 30%. In addition, IoT devices also play a role in automating loading and unloading activities in warehouses. Sensors installed at entry and exit points automatically record inventory movement without the need for human intervention. This contributes to an increase in warehouse efficiency by up to 25%, as observed in one

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

manufacturing company. Furthermore, data collected from IoT sensors is used to support predictive maintenance programs for operational vehicles. This technology can detect early signs of technical issues in transport fleets, enabling preventive maintenance actions before more serious problems arise. Based on questionnaires completed by logistics company technicians, predictive maintenance strategies have successfully reduced vehicle downtime by up to 20%.

Big data analytics technology also plays a vital role in improving the accuracy of market demand forecasting. By analyzing historical patterns and demand trends in depth, companies can develop more efficient inventory strategies. Supply chain managers from several companies reported an increase in the accuracy of forecasting customer needs by 15%, which directly impacts the reduction of excess stock and improves customer satisfaction. The synergy between IoT sensors and big data analytics is also utilized to dynamically optimize delivery routes based on traffic conditions, weather, and energy efficiency—cutting average delivery time by up to 10%. Additionally, this system can be used to identify potential disruptions in the supply chain, such as delivery delays or stock discrepancies, allowing companies to take early mitigation actions. The implementation of risk analytics has been proven to reduce supply chain disruption incidents by 18%.

Despite its great potential benefits, the process of digitalization in supply chain management still faces several significant obstacles, especially in Indonesia. One of the main challenges is the high initial investment required to implement advanced digital technologies. Many businesses, particularly small and medium enterprises (SMEs), struggle to allocate funds to build ERP systems, integrate IoT devices, or develop big data analytics platforms. This issue is exacerbated by the unequal access to technological infrastructure, particularly in remote areas that lack stable internet connectivity. As a result, digitalization processes cannot be uniformly implemented across the entire supply chain, limiting the overall benefits.

Beyond financial and infrastructure aspects, the shortage of digital skills among the workforce also poses a serious challenge in implementing digital technologies. Many companies face difficulties in recruiting or developing employees with the technical capabilities to operate digital systems such as ERP management or large-scale data analytics. Limited access to technology training programs and the suboptimal implementation of human resource development policies hinder the full utilization of adopted digital systems. Therefore, a long-term commitment to investing in human capital development through continuous training and digital literacy programs is a strategic step to ensure the sustainability and success of digital transformation in corporate supply chains in Indonesia.

CONCLUSION

Based on the research findings, it can be concluded that digitalization has a positive impact on improving the efficiency of Supply Chain Management in Indonesia. The implementation of digital technology in SCM successfully reduces operational costs, increases delivery speed, and enhances accuracy in inventory planning and management. However, challenges related to high implementation costs, limited technological infrastructure, and lack of human resource skills must be addressed to optimize the application of digitalization. Therefore, companies need to invest more resources in

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

workforce training and strengthen technological infrastructure to fully benefit from digital technology in SCM.

REFERENCES

- Adam, M., Ibrahim, M., Ikramuddin, I., & Syahputra, H. (2020). The role of digital marketing platforms on supply chain management for customer satisfaction and loyalty in small and medium enterprises (SMEs) at Indonesia. *International Journal of Supply Chain Management*, 9(3), 1210-1220.
- Bowersox, Donald J., Closs, David J., & Cooper, M. Bixby. (2013). Supply Chain Logistics Management. McGraw-Hill.
- Buchan, John & Koenigsberg, Ernest. (1986). Scientific Inventory Management. Wiley.
- Chopra, Sunil & Meindl, Peter. (2018). Supply Chain Management: Strategy, Planning, and Operation. Pearson.
- Dharmayanti, N., Ismail, T., Hanifah, I. A., & Taqi, M. (2023). Exploring sustainability management control system and eco-innovation matter sustainable financial performance: The role of supply chain management and digital adaptability in indonesian context. *Journal of Open Innovation: Technology, Market, and Complexity*, 9(3), 100119.
- Febransyah, A., & Camelia Goni, J. I. (2022). Measuring the supply chain competitiveness of e-commerce industry in Indonesia. *Competitiveness Review: An International Business Journal*, 32(2), 250-275.
- Hadley, G., & Whitin, T. M. (1963). Analysis of Inventory Systems. Prentice-Hall.
- Handfield, Robert B. & Nichols, Ernest L. Jr. (2002). Supply Chain Redesign: Transforming Supply Chains into Integrated Value Systems. Pearson Education.
- Harsanto, B., Farras, J. I., Firmansyah, E. A., Pradana, M., & Apriliadi, A. (2024). Digital technology 4.0 on halal supply chain: a systematic review. *Logistics*, 8(1), 21.
- Iman, N., Amanda, M. T., & Angela, J. (2022). Digital transformation for maritime logistics capabilities improvement: cases in Indonesia. *Marine Economics and Management*, 5(2), 188-212.
- Iskandar, T., & Arifin, R. (2023). Navigating Indonesia's logistics and supply chain challenges: A data-driven analysis of logistics performance index. *Jurnal BPPK: Badan Pendidikan dan Pelatihan Keuangan*, 16(1), 110-123.
- Judijanto, L., Asniar, N., Kushariyadi, K., Utami, E. Y., & Telaumbanua, E. (2024). Application of integrated logistics networks in improving the efficiency of distribution and delivery of goods in indonesia a literature review. *Sciences du Nord Economics and Business*, 1(01), 01-10.
- Kurnia, S., Wicaksana, A. P., Dilnutt, R., Adnan, H. R., Hidayanto, A. N., Lawi, A., ... & Utami, R. (2022). Enhancing Digital Literacy in Supply Chain Management: A Case Study of an Indonesian Port Corporation.
- Margaretha, R., Syuzairi, M., & Mahadiansar, M. (2024). Digital transformation in the maritime industry: Opportunities and challenges for Indonesia. *Journal of Maritime Policy and Strategy*, 1(1), 1-12.
- Masudin, I., Almunawar, M. N., Restuputri, D. P., & Sud-On, P. (Eds.). (2022). *Handbook of Research on Promoting Logistics and Supply Chain Resilience Through Digital Transformation*. IGI Global.

E-ISSN: 3032-7652

https://nawalaeducation.com/index.php/MJ/index

Vol.2.No.2 April 2025

https://doi.org/10.62872/r8rxaz08

- Muafi, M., & Sulistio, J. (2022). A nexus between green intellectual capital, supply chain integration, digital supply chain, supply chain agility, and business performance. *Journal of Industrial Engineering and Management*, 15(2), 275-295.
- Mufadhol, M., Warsito, B., Wibowo, A., Mustafid, M., & Suryono, S. (2022, September). The Impact of Supply Chain Information System on The Digital Economics and logistics transportation. In *IOP Conference Series: Earth and Environmental Science* (Vol. 1083, No. 1, p. 012087). IOP Publishing.
- Muhyidin, S. (2024). OPTIMIZING SUPPLY CHAIN MANAGEMENT FOR OPERATIONAL EFFICIENCY. *Papua: International Journal of Sharia Business Management*, 1(1), 45-60.
- Nugraha, D. W., Ismail, H., Wardhana, A., Wijaksana, T. I., & Yunani, A. (2023, December). A systematic literature review: implementation of ERP systems in logistics companies supply chain management in developed and developing countries. In *International Conference on Mathematical and Statistical Physics, Computational Science, Education and Communication (ICMSCE 2023)* (Vol. 12936, pp. 257-264). SPIE.
- Ricardianto, P., Christy, E., Pahala, Y., Abdurachman, E., Soekirman, A., Purba, O. R., ... & Endri, E. (2023). Digitalization and logistics service quality: Evidence from Indonesia national shipping companies. *International Journal of Data & Network Science*, 7(2).
- Rustina, E., Tarigan, S., Makbul, Y., Ie, M., Pratiwi, H., Cahyani, N., & Wening, N. (2024). The Partnership and Logistics Leadership in The SMEs: The Impact of Digital Supply Chain Implementation.
- Saryatmo, M. A., & Sukhotu, V. (2021). The influence of the digital supply chain on operational performance: a study of the food and beverage industry in Indonesia. *Sustainability*, 13(9), 5109.
- Sembiring, A. R., Ridho, M. H., Nurcahyo, M. A., & Muhammad, S. I. (2024). LEVERAGING INDONESIA LOGISTICS ECOSYSTEM WITH FRONTIER TECHNOLOGY. *Jurnal BPPK: Badan Pendidikan dan Pelatihan Keuangan*, 17(3), 12-28.
- Simanjuntak, M., Barasa, L., & Tampubolon, B. M. (2024). Unlocking Efficiency: Impact of Digital Supply Chain Technologies on Indonesian Maritime Logistics. *Jurnal Abdidas*, *5*(3), 185-194.
- Taufani, M., & Widjaja, A. W. (2023). The manifestation of digital transformation concept in Indonesian logistic firms. *Jurnal Manajemen*, *27*(3), 428-448.

