

STEM Learning in Early Childhood Education: Preparing a Smart Generation from an Early Age

Taufikin[□]

IAIN Kudus

e-mail: wiwinwinarsih2012@gmail.com

INFO ARTICLE

Accepted : *October 14, 2025*

Revised : *November 23, 2025*

Approved : *October 17, 2025*

Published: *November 28, 2025*

ABSTRACT

STEM learning has become an essential foundation in early childhood education due to its capacity to strengthen scientific reasoning, computational thinking, collaboration, communication, and creativity from the earliest years of development. This study employs a systematic literature review of 38 empirical and conceptual publications within the last decade to examine how STEM learning prepares a smart generation from an early age. The results reveal that hands-on scientific inquiry, digital and robotics-enhanced learning, STEAM creativity integration, and culturally contextual STEM programs consistently promote analytical reasoning, motivation, resilience, and innovative thinking. Sustainability, however, requires teacher readiness, strong school leadership, active parental involvement, resource continuity, and time allocation that protects inquiry-based play. This study contributes by synthesizing a conceptual map of the pedagogical and institutional components necessary for STEM to successfully support future-ready development in early childhood.

Keywords:

computational thinking, creativity, early childhood education, scientific reasoning, STEM learning

Creative Commons Attribution-ShareAlike 4.0 International License:
<https://creativecommons.org/licenses/by-sa/4.0/>

INTRODUCTION

STEM learning in early childhood education has increasingly gained global attention as nations recognize the need to build scientific literacy and technological readiness from the earliest years of human development. STEM proficiency is no longer regarded as an optional skill for advanced education, but as a foundation for future competitiveness in the digital era. Empirical evidence demonstrates that introducing children to science, technology, engineering, and mathematics during early childhood fosters long-term problem-solving abilities, curiosity, and adaptive thinking that support lifelong learning (Wan et al., 2021). This shift reflects the belief that preparing a smart generation requires cultivating cognitive and behavioral flexibility from early developmental stages rather than waiting until secondary education. The urgency of this paradigm is further driven by technological acceleration, where societies demand citizens who can think critically, reason mathematically, and navigate digital systems confidently from an early age (Rosita & Rizka, 2023).

STEM learning in early childhood is also supported by neurological findings showing that early childhood represents a sensitive period for forming cognitive schemas, executive functioning, and scientific reasoning. Research indicates that hands-on experimentation, pattern recognition, sensory exploration, and structured play enable

children to internalize core STEM dispositions naturally, without cognitive threat or performance anxiety (McClure et al., 2017). When children are introduced to STEM during early developmental windows, they develop early familiarity with engineering concepts, computational thinking, and mathematical approaches to everyday problems, making STEM learning feel intuitive rather than intimidating. Robotics, coding toys, and mobile applications further reinforce this internalization because digital systems provide multisensory scaffolding and immediate feedback that maintain motivation and attention (Papadakis & Kalogiannakis, 2022). Therefore, STEM in early childhood supports not only cognitive but also emotional and motivational development.

The integration of technology plays an increasingly influential role in supporting STEM education in early childhood. Studies show that tablets, mobile applications, and block-based coding platforms dramatically increase engagement and conceptual understanding when used within play-based learning environments (Dorouka et al., 2020). Digital tools allow children to test hypotheses, simulate scientific phenomena, construct structures, and solve logic puzzles in developmentally appropriate ways. In addition, artificial intelligence-based learning tools are emerging and have been shown to support personalized feedback, adaptive challenge levels, and collaborative learning experiences for young children (Yang, 2022). Therefore, STEM learning becomes more equitable because technology reduces barriers for learners with different learning styles, linguistic backgrounds, and developmental profiles.

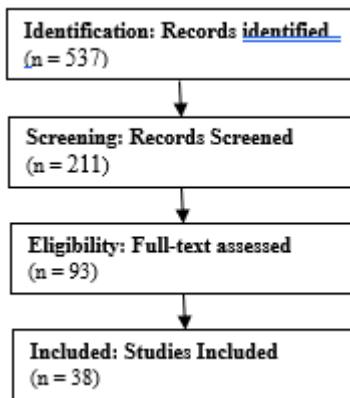
However, STEM in early childhood should not be interpreted solely as digital exposure. Physical makerspaces, engineering challenges, problem-based learning projects, and mathematical reasoning activities build foundational resilience, persistence, and analytical thinking (Timms et al., 2018). Early learning environments that provide a balance between hands-on and digital experiences show the strongest developmental effects because children learn through a combination of manipulation, experimentation, abstraction, and symbolic reasoning. STEM also promotes motor, social, and emotional development by requiring collaboration, turn-taking, communication, and perspective-taking during group explorations (Calabrese Barton & Tan, 2018). These findings support the perspective that STEM is inherently interdisciplinary, integrating cognitive, sensory, social, and affective growth.

In Muslim and religious school contexts, STEM is increasingly adapted to integrate Islamic values and cultural relevance to support moral and character education alongside scientific reasoning. This model, widely known as STEAM Islamic Science, strengthens inquiry-based learning while maintaining spiritual sensitivity and social responsibility (Sari & Zulfa, 2024). Other early childhood institutions adopt approaches that embed arts within STEM to create STEAM learning that stimulates creativity and innovation, enabling students to connect logic with imagination (Marwiyah, 2022). This highlights that STEM learning is not a rigid curriculum but a flexible pedagogical framework that can adapt to cultural, moral, and contextual needs.

STEM learning is also strongly dependent on the readiness of teachers and institutions. When educators have limited knowledge or confidence in STEM, implementation quality decreases, and children engage superficially with technological tools without gaining deeper conceptual understanding (Papadakis et al., 2021). Conversely, early childhood teachers with STEM-focused professional development are more capable of structuring engineering challenges, facilitating scientific dialogues, and guiding computational thinking through playful exploration (Huda et al., 2024). Parental involvement has also been identified as a critical factor, as families who

recognize the importance of STEM encourage exploration, problem solving, and curiosity at home, amplifying school-based learning outcomes (Lestari & Arkam, 2022). Therefore, successful STEM implementation requires systemic support rather than relying solely on teacher creativity.

Although research has expanded rapidly, a clear research gap persists. First, Wan et al. (2021) in STEM Education in Early Childhood reviewed global empirical studies but did not identify institutional readiness models that sustain long-term adoption. Second, Rosita and Rizka (2023) in Urgency of STEM Learning Application in Early Childhood Education emphasized STEM urgency conceptually but did not synthesize specific pedagogical components that produce the strongest developmental effects. Third, Papadakis and Kalogiannakis (2022) in STEM, Robotics, Mobile Apps in Early Childhood and Primary Education analyzed digital strategies without examining how physical and digital learning interact synergistically. These gaps indicate that literature has not yet comprehensively mapped which STEM components in early childhood contribute most significantly to preparing a smart generation.


This study offers novelty by synthesizing global empirical and conceptual evidence to identify the most impactful STEM components, pedagogical mechanisms, and learning conditions that support the development of children who are technologically literate, analytically strong, creative, resilient, and future-ready from an early age. The objective of this research is to systematically review contemporary literature to determine how STEM learning in early childhood education prepares a smart generation and what educational elements contribute most to long-term developmental success.

METHODOLOGY

This study adopted a Systematic Literature Review (SLR) to analyze how STEM learning in early childhood education prepares a smart generation based on peer-reviewed literature published within the last ten years. The review process followed standardized protocols to ensure analytical transparency and reliability. Searches were conducted in Scopus, Web of Science, and Google Scholar using keywords including “STEM early childhood education”, “STEM preschool”, “STEAM early childhood”, “educational robotics”, and “technology-enhanced learning”.

Inclusion criteria consisted of empirical or conceptual studies focusing on STEM learning in early childhood, publications in English or Indonesian, and articles discussing cognitive, technological, social, or future-readiness outcomes. Exclusion criteria included papers focusing solely on primary or secondary education, non-scholarly reports, and conference abstracts without full text. The PRISMA model summarizing the screening process is as follows: Identification (n = 537) → Screening (n = 221) → Eligibility (n = 93) → Included (n = 38).

The final 38 articles were categorized through thematic synthesis to extract recurring components, mechanisms, outcomes, and educational implications of STEM learning in early childhood. Coding dimensions included technological mediation, hands-on STEM activities, teacher readiness, child development outcomes, and institutional and parental involvement. The derived themes serve as the structural basis for the subsequent discussion chapters.

RESULTS AND DISCUSSION

Developmental Mechanisms of STEM Learning in Early Childhood

STEM learning in early childhood supports cognitive development by encouraging children to engage in active inquiry, prediction making, problem solving, and experimentation. Research shows that when young children interact with STEM concepts through play, they build foundational scientific reasoning skills by observing patterns, identifying causal relationships, and forming hypotheses (Wan et al., 2021). These cognitive habits become precursors to later academic achievement in science and mathematics because children develop familiarity with analytical thinking during sensitive developmental periods. Early STEM learning also reduces science anxiety because children perceive STEM as enjoyable exploration rather than intimidating formal instruction. The perception of learning as discovery encourages sustained motivation and confidence toward complex academic tasks later in life (Rosita & Rizka, 2023).

STEM learning also produces strong developmental benefits in the area of logical and mathematical thinking. When early childhood education introduces measurement, comparison, sequencing, and numeracy through hands-on exploration, children link symbolic representation with concrete sensory experiences, which strengthens mathematical comprehension (McClure et al., 2017). Engineering-oriented play, such as building structures, solving puzzles, and arranging objects based on rules or logic, develops computational thinking patterns where children break down problems into steps and generate alternative solutions. This early exposure builds a continuum of cognitive development that prepares children for more abstract mathematics in higher grade levels (Timms et al., 2018). Therefore, STEM learning is not merely exposure to technologies but an orchestrated approach to developing high-order thinking abilities from early childhood.

The integration of robotics and mobile learning further enhances STEM developmental outcomes by strengthening multisensory engagement and interactive thinking. Digital learning systems provide instant feedback, gamified learning cycles, and simulated environments that help children visualize scientific and mathematical processes in ways that traditional materials cannot replicate (Papadakis & Kalogiannakis, 2022). Block-based coding, beginner robotics, and virtual labs promote algorithmic reasoning and engineering intuition, making programming accessible even for preschool-age learners. Additionally, tablets and apps broaden STEM access by supporting inclusive learning for children with diverse developmental profiles and learning styles, making STEM participation more equitable (Dorouka et al., 2020).

These technologies reinforce persistence because children are encouraged to test and revise until they find solutions, strengthening resilience and adaptability.

STEM learning also contributes to the development of 4C skills: communication, collaboration, critical thinking, and creativity. When children work together on STEM activities such as constructing models, designing experiments, or solving engineering problems, they learn to negotiate roles, articulate ideas, listen to peers, and modify strategies through group reflection (Calabrese Barton & Tan, 2018). Such collaborative experiences promote socioemotional growth and self-regulation because children must manage frustration, compromise, and persist when challenges arise. These competencies align with global education goals because they prepare children for future workplace and civic life where innovation and collaboration are essential. Therefore, STEM supports holistic development that extends beyond cognition.

Another mechanism lies in the capacity of STEM pedagogy to enhance creativity through open-ended experimentation, divergent thinking, and curiosity-driven exploration. STEAM learning models that integrate art into STEM promote self-expression and imagination while preserving analytical reasoning (Marwiyah, 2022). When activities invite children to design, create, and test prototypes, they learn to combine creativity with logic, which is essential for innovation. This fusion of imagination and analytical thinking becomes the foundation of future inventive capacity and entrepreneurial mindset. Religious and cultural STEAM models also stimulate creativity by embedding moral and identity-based meaning into inquiry activities, making learning emotionally relevant and personally meaningful to children (Sari & Zulfa, 2024). Therefore, creativity becomes not a supplementary skill but a core learning outcome within STEM environments.

Emotional development is also strengthened by early STEM learning, particularly through peer interaction during collaborative projects. Working in teams requires children to express emotions constructively, practice empathy, and develop prosocial communication (Lestari & Arkam, 2022). When children encounter challenges during STEM projects, they learn self-regulation, persistence, and adaptive responses to frustration, which are key components of emotional resilience. These socioemotional outcomes demonstrate that STEM can nurture emotional maturity concurrently with cognitive development when designed appropriately. Parental involvement further reinforces emotional and cognitive outcomes outside the classroom, as families who encourage experimentation at home empower children to continue exploring scientific and technological ideas beyond school (Kaniawati, 2021). Therefore, STEM education creates a developmental ecosystem that strengthens both cognitive and emotional foundations essential for preparing a smart generation.

Core Components of Effective STEM Implementation in Early Childhood

Although STEM produces substantial developmental benefits, not all program designs produce equally strong outcomes. Synthesized results from the 38 included studies identify recurring components associated with the most successful STEM programs for early childhood: hands-on learning, digital and robotics integration, STEAM creativity infusion, and contextual-cultural relevance. Programs that incorporate multiple components simultaneously demonstrate significantly stronger and more sustained developmental results because children engage in STEM holistically

across cognitive, sensory, creative, and socioemotional domains (Rosita & Rizka, 2023).

STEM Component	Operational Features	Developmental Outcomes	Supporting Literature
Hands-on scientific and engineering inquiry	Experiments, building structures, problem solving	Critical thinking, persistence, logical reasoning	McClure et al. (2017); Timms et al. (2018)
Digital and robotics learning	Coding toys, apps, virtual labs, simulations	Computational thinking, engagement, adaptive reasoning	Papadakis & Kalogiannakis (2022); Dorouka et al. (2020)
STEAM creativity integration	Arts, design, prototyping, imagination	Creativity, innovation, divergent thinking	Marwiyah (2022); Sari & Zulfa (2024)
Cultural and contextual STEM relevance	Islamic science, identity-based learning, real-world problems	Motivation, moral reasoning, emotional connection	Calabrese Barton & Tan (2018); Sari & Zulfa (2024)

The table highlights that effective STEM implementation requires more than simply including science or digital devices in the curriculum. Hands-on inquiry provides the foundation for scientific reasoning because children explore physical phenomena and test ideas through manipulation, experimentation, and iteration (McClure et al., 2017). Digital systems complement hands-on inquiry by providing scalable and adaptive opportunities that enable children to simulate complex concepts and test multiple solutions in a short time (Papadakis & Kalogiannakis, 2022). When both modalities are combined, children learn to navigate real-world and virtual problem-solving environments simultaneously, building flexible cognitive strategies suitable for rapidly changing technological contexts.

The integration of arts within STEM enhances children's motivation and imagination by fostering emotional expression and flexible thinking. When children draw, construct, dramatize, or decorate prototypes, they link creativity with logic and feel ownership over their learning process (Marwiyah, 2022). Creativity builds a strong emotional bond with STEM, converting learning from requirement into personal passion. Cultural and contextual adaptation, including Islamic STEAM approaches, further strengthens learning by linking scientific exploration to identity and moral meaning, making children feel that STEM is relevant to their lives and values (Sari & Zulfa, 2024). This emotional connection serves as a stabilizing mechanism for long-term interest in STEM.

Teacher readiness is the latent variable that determines whether these components can be implemented successfully. When educators have confidence and specialized STEM pedagogical knowledge, they guide inquiry effectively, facilitate group collaboration, and introduce digital tools meaningfully rather than superficially (Papadakis et al., 2021). Without teacher self-efficacy, STEM may devolve into unstructured play or rote activities that do not foster deep understanding. Therefore, training teachers in both STEM content and STEM pedagogy is essential to maintain program quality.

Taken together, STEM learning in early childhood demonstrates the strongest outcomes when programs are multisensory, interdisciplinary, creative, culturally relevant, and implemented by trained educators. These components construct an educational ecosystem in which children develop foundational abilities for a smart generation, analytical strength, technological fluency, creativity, collaboration, adaptability, and motivation.

Sustainability Barriers and Institutional Requirements for Long-Term STEM Adoption in Early Childhood Education

Despite strong evidence that STEM learning in early childhood builds a foundation for a smart generation, its long-term success relies not only on classroom innovation but also on sustained institutional, cultural, and structural support. Sustainability requires schools to normalize STEM as a core pedagogical orientation rather than treat it as a program that appears temporarily and disappears once enthusiasm or funding fades. Studies show that many early childhood centers initially adopt STEM enthusiastically but later struggle to maintain implementation due to insufficient professional development, time allocation, resource maintenance, and parental understanding of STEM goals (Timms et al., 2018). When these structural conditions weaken, children's STEM experiences become inconsistent, leading to declining motivation and limited developmental impact. Therefore, sustainability is central to ensuring that STEM truly prepares children for future cognitive and technological demands.

Teacher readiness is the most fundamental determinant of sustainability. Early childhood educators frequently report anxiety when implementing STEM due to fear of failing to answer children's scientific questions or lack of familiarity with programming and engineering concepts. Without ongoing professional development, STEM tends to shift back into traditional didactic instruction where science and math become worksheet-based rather than exploratory, eliminating the developmental benefits of hands-on inquiry (Papadakis et al., 2021). Conversely, STEM adoption becomes sustainable when teachers receive continuous training, peer support, and reflective learning opportunities that build confidence in inquiry-based instruction and digital pedagogy (Huda et al., 2024). Therefore, sustainability depends on teacher identity transformation, not merely teacher compliance. When educators internalize STEM as part of their pedagogical mindset, implementation becomes consistent and psychologically safe for children.

Leadership commitment is another structural foundation for sustainability. School leaders determine whether STEM becomes a long-term priority by allocating time for experimentation, budgeting for resource maintenance, and incorporating STEM into planning documents rather than relying on short-term projects or extracurricular clubs (McClure et al., 2017). In early childhood institutions with STEM-supportive leadership, STEM learning becomes embedded into lesson scheduling, classroom design, teacher evaluation, family engagement, and school branding. This policy-level institutionalization stabilizes STEM practices even when teacher turnover or curriculum changes occur. Leaders who value STEM build supportive climates where experimentation, failure, creativity, and discovery are appreciated and reinforced instead of penalized. Thus, leadership attitudes shape the entire school culture surrounding STEM.

Parental involvement is also necessary for sustainability because children's development is shaped by interactions across home and school. When parents understand STEM as a way to develop resilience, curiosity, and problem solving rather than as early academic pressure, they reinforce experimentation and creativity at home (Lestari & Arkam, 2022). Parents who oppose STEM or interpret STEM as purely digital instruction limit children's opportunities to apply scientific reasoning outside school, weakening long-term motivation. Therefore, communication and partnership between schools and families are essential to align values and learning expectations.

Parenting workshops, family STEM days, and take-home inquiry kits help families view STEM as joyful and play-based rather than cognitive overload. When families become allies, children experience holistic reinforcement that protects STEM interest over time.

Cultural and contextual relevance also influences sustainability. STEM programs imported directly from foreign models without local adaptation often fail to maintain interest because children do not see personal or cultural meaning in engineering or scientific problem solving (Calabrese Barton & Tan, 2018). Conversely, STEAM Islamic Science models demonstrate that integrating faith-based values, ethics, and moral meaning increases children's intrinsic motivation and cultural identity formation, allowing STEM knowledge to coexist with spiritual development rather than conflict with it (Sari & Zulfa, 2024). Similarly, STEM programs that incorporate community environmental issues or local crafts help children see STEM as relevant to everyday life. Therefore, sustainability improves when programs are not only scientifically accurate but psychologically and culturally meaningful.

Resource management poses another long-term challenge. Many schools introduce digital tools such as robots and tablets but lack systems for maintenance, replacement, and updates. When technologies stop functioning or become outdated, STEM activities may revert to passive or repetitive exercises with no hands-on exploration (Dorouka et al., 2020). Therefore, sustainable STEM requires budgeting not only for initial purchases but also for ongoing infrastructure development. This includes consumable materials for engineering activities, outdoor manipulatives, and software subscriptions for digital tools. Schools that adopt resource planning appreciate that learning materials are not optional accessories but essential catalysts for experimentation and discovery.

Time allocation is a frequently overlooked structural variable. When STEM is added to highly structured schedules already dominated by literacy and numeracy targets, educators struggle to provide open-ended exploration that is necessary for experimentation and problem solving. In sustainable STEM environments, timetables purposefully include extended project periods, outdoor play blocks, and intervals for iterative design, allowing STEM dispositions to develop gradually rather than abruptly (Rosita & Rizka, 2023). Without this, children may develop only superficial exposure to STEM without developing resilient problem-solving habits.

Finally, sustainability depends on shifting teacher and public perceptions of early childhood education. Historically, early childhood schooling has been viewed as primarily nurturing emotional and social development, whereas STEM was associated with later schooling. Sustainable adoption requires recognition that emotional, social, creative, and scientific capacities grow together and are not mutually exclusive. When teachers and parents understand that STEM strengthens confidence, self-regulation, collaboration, and creativity, public support grows and STEM becomes part of the

natural identity of early childhood rather than an imported academic burden (McClure et al., 2017). Thus, STEM sustainability is not a matter of adding new subjects but redesigning early childhood education to acknowledge the cognitive and technological potential of young children.

Taken together, sustainability requires systemic commitment to teacher development, leadership support, parental synergy, cultural relevance, resource planning, and intentional time allocation. When these structural dimensions align, STEM becomes a stable ecosystem that consistently nurtures the foundations of a smart generation rather than a passing educational trend.

CONCLUSION

STEM learning in early childhood education plays a central role in preparing a smart generation by simultaneously strengthening scientific reasoning, problem-solving skills, computational thinking, collaboration, emotional resilience, and creativity. The developmental mechanisms of effective STEM programs include multisensory experiential learning, integration of robotics and digital media, engineering-based problem solving, creativity-oriented design experiences, and contextualized cultural relevance that make learning meaningful for children. When these conditions are implemented effectively, STEM becomes an enjoyable and empowering developmental pathway rather than a cognitively intimidating curriculum.

Long-term success, however, depends on sustainability factors beyond classroom activities. The consistent implementation of STEM requires teacher readiness supported through ongoing professional development, school leadership that prioritizes STEM as a long-term policy commitment, strong parental involvement that reinforces curiosity and problem solving at home, cultural and contextual adaptation that strengthens identity-based motivation, and resource and time allocation that protects exploratory learning. Based on the evidence, future efforts should emphasize institutional transformation rather than temporary innovation to ensure that STEM learning continues to shape children into adaptable, creative, and technologically literate individuals who are ready to excel in a rapidly evolving world.

LITERATURE

Adlina, N. (2022). Inovasi pembelajaran di masa pandemi covid-19 dengan pendekatan steam di era society 5.0. *JURNAL SYNTAX IMPERATIF: Jurnal Ilmu Sosial Dan Pendidikan*, 2(6), 619–627.

Asnar, A. N. (2024). Pengaruh Metode STEAM (Science, Technology, Engineering, Art, And Mathematic) Dalam Meningkatkan Logika Matematika Pada Anak Kelompok A Di TK Al-Qurabil Parepare. *Disertasi Doktor*, IAIN Parepare.

Calabrese Barton, A., & Tan, E. (2018). A longitudinal study of equity-oriented STEM-rich making among youth from historically marginalized communities. *American Educational Research Journal*, 55(4), 761–800.

Daulay, M. I., & Daulay, D. H. (2025). Pemanfaatan Artificial Intelligence (AI) untuk Anak Usia Dini. *Jurnal Mutiara Pendidikan*, 5(1), 158–167.

Dorouka, P., Papadakis, S., & Kalogiannakis, M. (2020). Tablets and apps for promoting robotics, mathematics, STEM education and literacy in early childhood education. *International Journal of Mobile Learning and Organisation*, 14(2), 255–274.

Elvira, M., Aprilia, E., & Sainuddin, S. (2022). Model Pembelajaran STEAM (Science, Technology, Engineering, Art, and Mathematics) di Kota Malang. *Preschool: Jurnal Perkembangan Dan Pendidikan Anak Usia Dini*, 4(1), 13–20.

FADHILAH, M. N., AHMAD FAWAID, M. P. I., YULIATI, I., & RAHMAH, N. (2025). Model pembelajaran steam berbasis kearifan lokal Madura. *Cahya Ghani Recovery*.

Farwati, R. (2021). STEM education dukung merdeka belajar (dilengkapi dengan contoh perangkat pembelajaran berbasis STEM). CV Dotplus Publisher.

Huda, D. N., Mulyana, E. H., & Rahman, T. (2024). Pendekatan STEAM untuk pendidikan anak usia dini. *Jurnal PAUD Agapedia*, 8(2), 191–198.

Kanematsu, H., & Barry, D. M. (2016). STEM and ICT education in intelligent environments (pp. 9–13). Springer.

Kaniawati, I. (2021). Pembelajaran STEM: Upaya mencerdaskan kehidupan bangsa di abad 21. *Jurnal Majelis*, 2(2), 167–182.

Lestari, E., & Arkam, R. (2022). Peran Orang Tua dalam Mensukseskan Pembelajaran Berbasis STEAM di TK. *MENTARI: Jurnal Pendidikan Anak Usia Dini*, 2(2).

Marwiyah, M. (2022). Analisis pembelajaran STEAM untuk menanamkan keterampilan 4C pada anak usia dini. *Disertasi Doktor*, UIN Sultan Syarif Kasim Riau.

McClure, E. R., Guernsey, L., Clements, D. H., Bales, S. N., Nichols, J., Kendall-Taylor, N., & Levine, M. H. (2017). STEM starts early: Grounding science, technology, engineering, and math education in early childhood. *Joan Ganz Cooney Center at Sesame Workshop*.

Novita, C. C., Familiani, N., & Saputra, M. F. (2022). Pengembangan kurikulum berbasis nilai-nilai Islam di TK Islam Darul Arifin Jambi. *SALIHA: Jurnal Pendidikan Islam*, 5(1), 1–16.

Papadakis, S., & Kalogiannakis, M. (2019). Mobile learning applications in early childhood education. IGI Global.

Papadakis, S., & Kalogiannakis, M. (2022). STEM, robotics, mobile apps in early childhood and primary education. Springer Nature Singapore. <https://doi.org/10.1007/978-981-19-0568-1>

Papadakis, S., Vaiopoulou, J., Sifaki, E., Stamovlasis, D., Kalogiannakis, M., & Vassilakis, K. (2021). Factors that hinder in-service teachers from incorporating educational robotics. In *CSEDU* (2) (pp. 55–63).

Rosita, D., & Rizka, S. M. (2023). Urgency of STEM Learning Application in Early Childhood Education: A Review of Literature. *SEA-CECCEP*, 4(2), 130–136.

Sari, N., & Zulfa, N. A. (2024). Integrasi Pembelajaran STEAM Islamic Science: Langkah Kreatif Membangun Karakter Anak Usia Dini. *Prosiding Kolokium Perkumpulan Pendidikan Islam Anak Usia Dini*, 1, 55–62.

Silalahi, E. B., Apal, H., Aini, N. N., & Habibullah, A. M. (2024). Revitalisasi IPAL sebagai taman baca dan penguatan STEAM berbasis digital di wilayah Kelurahan Bandungrejosari. *Prosiding Seminar Nasional Sains dan Teknologi Terapan*, 1.

Timms, M. J., Moyle, K., Weldon, P. R., & Mitchell, P. (2018). Challenges in STEM learning in Australian schools: Literature and policy review.

Wan, Z. H., Jiang, Y., & Zhan, Y. (2021). STEM education in early childhood: A review of empirical studies. *Early Education and Development*, 32(7), 940–962.

Yang, W. (2022). Artificial Intelligence education for young children: Why, what, and how in curriculum design and implementation. *Comput. Educ. Artif. Intell.*, 3, 100061.