Biostatistical Approach to Predict Disease Risk Using Public Health Data
DOI:
https://doi.org/10.62872/zjyppe33Keywords:
Biostatistics, Public Health Data, Disease Risk PredictionAbstract
The increasing complexity of public health issues demands an analytical approach capable of optimally utilizing data to support disease prevention efforts. The increasing availability of public health data opens up opportunities for the development of evidence-based predictive approaches. This study aims to examine the role of biostatistical approaches in predicting disease risk using public health data and its implications for preventive efforts and health policy. The study employed a qualitative approach using literature review methods, including journal articles, academic books, and relevant policy documents. Data analysis was conducted thematically to identify the role of biostatistics in risk factor analysis, predictive model development, and the associated methodological and policy challenges. The study results indicate that biostatistical approaches play a crucial role in identifying multifactorial relationships between health determinants and disease incidence at the population level. Disease risk prediction models have been shown to support the identification of high-risk groups and the planning of more efficient preventive interventions. Key challenges include data quality, limited human resources, and gaps in the translation of analysis results into health policy. Overall, the biostatistical approach is a strategic foundation for the development of a data- and evidence-based public health system oriented towards disease prevention
Downloads
References
Andriani, L., Silaen, P. Y., Humayrah, W., Qurniyawati, E., Murdani, A. P., Yuliani, C., ... & Sihombing, I. U. A. (2025). Pengelolaan dan Pemanfaatan Data Kesehatan: Perspektif Epidemiologi. Sada Kurnia Pustaka
Astuti, A. D., Nurjanah, A., Sativa, S. Z., Rangkuti, S. R., Nafisah, N., Fitri, N., ... & Nasution, I. S. (2024). Analisis Kebijakan Kesehatan Mendorong Partisipasi Masyarakat Dalam Program Pencegahan Penyakit. JKEMS-Jurnal Kesehatan Masyarakat, 2(2), 96-104.
Chu, S. H., Huang, M., Kelly, R. S., Benedetti, E., Siddiqui, J. K., Zeleznik, O. A., ... & Consortium of Metabolomics Studies Statistics Working Group. (2019). Integration of metabolomic and other omics data in population-based study designs: an epidemiological perspective. Metabolites, 9(6), 117.
Hayati, A. N., & Pawenang, E. T. (2021). Analisis spasial kesehatan lingkungan dan perilaku di masa pandemi untuk penentuan zona kerentanan dan risiko. Indonesian Journal of Public Health and Nutrition, 1(2), 164-171.
Indriana, N. P. R. K., Dewi, I. A. U., & Darmayanti, P. A. R. (2025). Prediksi Stunting Berbasis Machine Learning melalui CERDIS: Cepat Resposif Deteksi Dini Stunting. J-REMI: Jurnal Rekam Medik dan Informasi Kesehatan, 7(1), 60-72.
Izza, N. C., & Rizmayanti, A. I. (2024). Analisis Rekam Medis dengan Metode Data Mining untuk Memprediksi Faktor Risiko Stunting dalam Kesehatan Masyarakat. Jurnal Manajemen Informasi dan Administrasi Kesehatan, 7(1), 1-9.
Karo-Karo, J., Syakir, A. R., Raihan, R., Sumanto, S., Budiawan, I., Pakpahan, R., & Christian, A. (2026). Prediksi Penyakit Jantung Menggunakan Algoritma Machine Learning Berdasarkan Indikator Kesehatan. Jurnal Ilmiah Sistem Informasi, 5(1), 84-95.
Kogevinas, M., Chatzi, L., Popay, J., Baum, F., Greenland, S., VanderWeele, T. J., ... & Buehler, J. W. (2022). Epidemiological and biostatistical approaches. Oxford Textbook of Global Public Health.
Lestari, M. D. (2024). ANALISIS DATA MINING UNTUK PEMANTAUAN KESEHATAN MASYARAKAT. Jurnal Dunia Data, 1(6).
Li, M. (2024). Exploring the Future of Biostatistics in Genomic Research: Opportunities and Challenges. Genomics and Applied Biology, 15.
Lumingkewas, C., & Mokodaser, W. G. (2025). Integrasi XGBoost dan Visualisasi Gradio untuk Memprediksi Pendapatan Pembayar Asuransi: Studi Kasus Rumah Sakit Swasta di Manado. Techno. com, 24(2).
Mustopa, R. (2025). PENGEMBANGAN MODEL PROMOSI KESEHATAN PENYAKIT TUBERKULOSIS BERBASIS M-Health UNTUK MENINGKATKAN PEMBERDAYAAN KADER. Jurnal Kesehatan Manarang, 11(2).
Olowe, K. J., Edoh, N. L., Zouo, S. J. C., & Olamijuwon, J. (2024). Conceptual frameworks and innovative biostatistical approaches for advancing public health research initiatives. International Journal of Scholarly Research in Medicine and Dentistry, 3(2), 11-21.
Sakarna, Y., Kalakota, S., Gottipati, A., Kaviandost, P., Chileveru, K., Bhola, R., & Singh, S. (2025). Applications of Biostatistics in Healthcare. Public Health, Epidemiology, and Beyond. Saudi J Med, 10(5), 270-276.
Saraswati, D. (2024). Inovasi Pelayanan Kesehatan: Deteksi Dini Penyakit Jantung Koroner melalui Posbindu PTM. Jurnal Kesehatan dan Kebidanan Nusantara, 2(1), 10-16.
Shafira, N. I., & Harits, J. M. (2025). PEMODELAN REGRESI BINOMIAL DENGAN INLA: STUDI KASUS FAKTOR RISIKO PENYAKIT DIABETES. SINERGI: Jurnal Riset Ilmiah, 2(1), 137-146.
Sidhu, G. K. (2024). Understanding the Nexus of Epidemiology and Biostatistics Unveiling the Dynamics of Public Health. Health Science Journal, 18(4), 1-3.
Soviadi, N. V., Anjarwati, N. N., Kep, M., An, S. K., Lesmono, W. D., Oresti, N. S., ... & Kep, M. (2025). Biostatistik Terapan: Analisis Data Kesehatan untuk Pengambilan Keputusan Berbasis Bukti. PT Bukuloka Literasi Bangsa.
Tanjung, N., Auliani, R., Rusli, M., Siregar, I. R., & Taher, M. (2023). Peran kesehatan lingkungan dalam pencegahan penyakit menular pada remaja di Jakarta: Integrasi ilmu lingkungan, epidemiologi, dan kebijakan kesehatan. Jurnal Multidisiplin West Science, 2(09), 790-798.
Xue, D., Hajat, A., & Fohner, A. E. (2024). Conceptual frameworks for the integration of genetic and social epidemiology in complex diseases. Global Epidemiology, 8, 100156.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Loso Judijanto, Isah Fitriani (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





