

Volume.1 Issue.6, (March, 2025) Pages 40-46 E-ISSN: 3048-1139

DOI: https://doi.org/10.62872/pmwcfq63 https://nawalaeducation.com/index.php/JHH

Heavy Metal Contamination in Beef Cattle on Local Community's Health (Study Case: PT. Vale Indonesia, Sorowako Indonesia)

Jasmin Ambas¹, Fatmawaty Annisa Syamsuddin², Syamsuddin Hasan³

- ¹ Faculty of Education and Sport, State University of Makassar, South Sulawesi, Indonesia
- ² Medical Faculty, Bosowa University, Makassar, South Sulawesi, Indonesia
- ³ Forage Crops and Pasture Laboratory, Faculty of Animal Husbandry, Hasanuddin University, Makassar, South Sulawesi, Indonesia

Received: February 19, 2025 Revised: February 28, 2025 Accepted: March 15, 2025 Published: March 31, 2025

Corresponding Author: Author Name*: Jasmin Ambas Email*:

jasminzoom33@gmail.com*

Abstract: Beef Cattle farming activity in post-mining site of PT. Vale Indonesia has been contaminated by heavy metals. This was indicated by 60% and 40% of produced beef from cattle farming in post-mining sites supplied to the traditional market. The study is a descriptive quantitative study employing descriptive statistics analysis. This study employed a purposive sampling method on 30 respondents consisting of 10 pregnant women, 10 teenagers (age of 10-17), and 10 adults (age of +17). The results of the study confirmed that there is the presence of potential health risks based on Sytmthoms (1) anemia, (2) headache, (3) fatigue and (4) sore throat in pregnant women for 41,43%; teenagers (age of 10-17) for 21,43% and the adults for 37,14% respectively. Although the authors found the potential health risk from the respondent, we could generalize all the symptoms come from the heavy metal contamination on beef consumed. Therefore, we need to conduct further study about the beef consumption of local communities around the post-mining area PT Vale, Indonesia.

Keywords: Heavy Metal Contamination, Beef Cattle, Health

How to cite: Jasmin Ambas, Fatmawaty Annisa Syamsuddin, Syamsuddin Hasan (2025). Heavy Metal Contamination in Beef Cattle on Local Community's Health (Study Case: PT. Vale Indonesia, Sorowako Indonesia). *Journal of Public Health Indonesian*, 1(6), 40-46. DOI: https://doi.org/10.62872/pmwcfq63

INTRODUCTION

Local communities in post-mining areas have traditionally faced degraded landscapes, environmental degradation, and socio-economic problems. Previously mines were often abandoned after the production phase without considering the potential risks to humans and the environment or social dimension (Sandlos and Keeling, 2016; Kivinen, 2017). The most common post-mining land use objectives include agriculture, livestock farming, forestry, pastures recreation, and conservation (McHaina, 2001; O. E. Kubit, Pluhar, and Graff, 2019). The utilization of post-mining land as livestock farming is very promising. However, post-mining land is the largest area that produces heavy metals. Environmental pollution by heavy metals is a threat and a serious concern nowadays (Ali, Khan, and Ilahi, 2019). Not all post-mining land contains exceeded heavy metals.

Volume.1 Issue.6, (March, 2025) Pages 40-46 E-ISSN: 3048-1139

DOI: https://doi.org/10.62872/pmwcfq63 https://nawalaeducation.com/index.php/JHH

If we indicated that the post-ming area contaminated heavy metals that exceeded food safety standards, the company, government, and local community should perform land rehabilitation and remediation. As an example, Kidston post-Gold Mine.

Beef and livestock products are essential need for human diet because they provide most of the nutrients. Heavy metals are environmental pollutants known for their toxicity, persistence in the environment (Ali, Khan, and Ilahi, 2019), and bioaccumulative properties. Heavy metals from manufactured pollution sources are continuously released into aquatic and terrestrial ecosystems (Ali, Khan, and Sajad, 2013). Contamination with heavy metals becomes serious threat due to toxicity, bioaccumulation, and biomagnification in the food chain (Demirezen and Uruç, 2006). Generally, Beef quality is essential as one factor of beef value. However, a number of farmers cannot fill the quality. Beef can also be hazardous media materials such as bacteria and other microorganisms from pen or feedstuffs. In contrast, Humans need to consume beef should be free of any harmful ingredients. The toxic materials may accumulate in the organs in heavy metals content such as Cu, Zn, Fe, Pb, Cr, Hg, etc. (Pan, Lu, and Lei, 2020; Lu et.al., 2014).

In recent years, much attention has focused on heavy metal levels in fish and other seafood. However, it is only a little attention on heavy metal levels of beef and its products. Related to this phenomenon, the research of heavy metals in beef consumption needs to be evaluated. Therefore, this study focuses on the contamination of heavy metals on beef from cattle that grazed around the area of PT Vale Indonesia and the effect of the contamination on the local community's health.

METODOLOGI

This study was conducted for three months in 2019 and was implemented to 30 respondents by purposive sampling consisting of 10 pregnant women, 10 teenage women (10-17 years), and 10 adults (over 17 years old). The respondent was living and directly consuming the beef from the area of PT. Vale Indonesia. The data were employed according to descriptive qualitative and were measured in Likert scale three tiers. The long-term problem with Likert-type scales and ordinal responses is the appropriate statistical treatment of these data. If the data is ordinal, non-parametric statistics are usually considered the most appropriate choice for analysis (Bishop and Herron, 2015; Djamba and Neuman, 2002).

Furthermore, this study was supported by Focused group discussion (FGD) to get an overview of the variables and indicators. The data were collected by direct interviews of 30 respondents. Tools and analysis used to obtain the research results were statistical descriptive. To complete the data experiment, this study also was analyzed by test validation and data absolute (Sullivan and Artino, 2013).

Volume.1 Issue.6, (March, 2025) Pages 40-46 E-ISSN: 3048-1139

DOI: https://doi.org/10.62872/pmwcfq63

https://nawalaeducation.com/index.php/JHH

RESULTS AND DISCUSSION

Heavy metals contamination on the beef affects the local community's health.

Table 1 showed that heavy metals contamination on beef was interpreted according to variables and indicators. Heavy metals contamination on beef from cattle grazing in PT vale Indonesia potentially affects health risks. About 41.43% affect health's pregnant women, 21.43% affect health's female teenagers (10-17 years of age), and 37.14% affect health's mature age (over age 17 years). The results are presented in Table 1

Table 1. Heavy metals on consumed beef of local community's health

Aspect	Variable	Indicators	Rating Score 1 2 3	Category
contaminatio on the beef	anemia,	Health risk 100 % 70 – 99% < 70%	19 8 3 8 7 15	2.03 (high) 1.46 2.23 2.40

Source: Research results, 2019

From Table 1, heavy metal on beef from cattle grazed in PT. Vale Indonesia tends to affect the local community's health, as shown by rating score (2.03), and the category is high influence, according to 2 and 3 values. The health variable, i.e. (1) anemia, (2) headache, (3) fatigue, (4) sore throat, the pregnant women respondent experiences the heavy metals on health symptoms. The pregnant women experienced anemia, sore throat repeatedly, and excessive fatigue. Afterward, they feel drowsiness after working 8 hours. Teenagers and adults also experience the symptoms. Although the respondents experienced the same symptoms as heavy metal effect on human health, it remains possible that the respondent symptoms come from other factors such as urban runoff, sewage disposal, insect or disease control agents, and pesticide applied to plants.

The local community at the post-mining site would expect the consumed beef products to have no health risk. In contrast, a study performed by (Purnama et al., 2014) confirmed the potential health risk due to consuming beef products. Heavy metal toxicity has been shown to be a significant threat, and there are several health risks associated with it. Although they have no biological role, the toxic effects of these metals can interfere with metabolic processes over a period of time (Jaishankar, et.al., 2014).

Heavy metals enter the beef through feedlots and water. The content of heavy metals in beef that humans consume cannot be removed by cooking. Therefore, further research is needed to determine the accumulation of heavy metals in beef cattle (Ako *et al*, 2019). The grazing area around the post-mining site showed the content of heavy metals, i.e., Cu of 1.05 mg/kg, Fe 108.34 mg/Kg, Zn 7.11 mg/kg, Cr 125.48 mg/kg, Ni

Volume.1 Issue.6, (March, 2025) Pages 40-46 E-ISSN: 3048-1139

DOI: https://doi.org/10.62872/pmwcfq63 https://nawalaeducation.com/index.php/JHH

0.61 mg/kg, respectively (Baloch, et.al., 2020). Although the Ministry of Health of the Republic of Indonesia (No.03725/B/SK/VII/1989) stated that the content of heavy metals was still below the threshold. Yet, it is indicated that harmful to human health or the community if they consume the Beef, water, and other foodstuffs sourced from the land area of PT Vale Indonesia. The contamination of the local community's health risks also can cause various organ systems disorders such as the blood, nervous system, kidneys, reproductive system and digestive tract headache, dermatitis, allergies, hives, inflammation of the throat, respiratory disorders, anemia, pneumonia, kidney failure.

The higher amounts of heavy metal essential contamination such as Cu and Zn can have severe consequences leading to liver cirrhosis, hepatitis, and/or hemolysis similar to those seen in acute copper poisoning (Yakup et.al., 2018). Non-essential elements such as Pb, Cd, Ni, and Cr are toxic to the human body. Pb exposure, always associated with gastrointestinal irritation and neurotoxicity in children and adults, causes cancer in humans (Karri, Schuhmacher, and V. Kumar, 2016). Heavy metals such as Nickel (Ni) and Chrom (Cr), Cadmium (Cd), and lead (Pb) is essential metal and occur at deficient levels in the environment. Ni is carcinogenic and can cause fibrosis, tumors, pneumonia, and emphysema (Salnikow and Kasprzak, 2005). WHO recommends a tolerable intake of 0.025 ppm/week for Pb and 0.49 ppm/body weight/week for Cd (WHO, 2009), a change from the previously permitted limit of 1.75 ppm/week for adults weighing 70 kg (Pandelova, et.al., 2012). In addition, Ni is important in the body at low levels as an enzyme activator but is a carcinogen at high concentrations (Sreekanth, et.al., 2013). WHO also has set a tolerable daily intake of Ni at 11 ppm/day/bodyweight for humans (WHO, 2009; Pandelova, et.al., 2012). Cr has been associated with urticaria, anemia, and generalized visceral disorders. In a recent study, half of the local population consuming wild boar meat was shown to be exposed to Cr levels >12.5 l ppm/week/person (CI for median = 0.5l ppm/Cr week/person) (Saha et.al., 2011) Furthermore, environmental pollution with sewage and urban agriculture that thrives on it helps spread the bioaccumulation of heavy metals in food. Most estimated metals indicated healthy risk since their values are higher than the permissible tolerable levels cited by internationals health (Kasozi *et al.*, 2021).

CONCLUSIONS

Beef from cattle grazed around PT Vale Indonesia may affect the local community's health either on pregnant women, teenagers or adults. Although the authors found the potential health risk from the respondent, we could generalize all the symptoms come from the heavy metal contamination on beef consumed. Therefore, we recommended that (1) the government, researcher, and company should evaluate the rehabilitation and remediation time in PT Vale Indonesia, (2) we need to conduct further study about the beef

Volume.1 Issue.6, (March, 2025) Pages 40-46 E-ISSN: 3048-1139

DOI: https://doi.org/10.62872/pmwcfq63 https://nawalaeducation.com/index.php/JHH

consumption of the local community around the post-mining area PT Vale Indonesia, (3), the government and company provide health service in the local community around PT Vale Indonesia.

ACKNOWLEDGMENTS

We want to express our special thanks of gratitude to PT Vale Indonesia tbk. Who gave us the golden opportunity to do this incredible research on the topic of the effect of Heavy Metal Contamination in beef cattle on the local community in the mining area of Sorowako, Indonesia. This research process helped us gain valuable information, and new insight we wish will become knowledge for people in the future. Secondly, we also want to thank the Rector University research team of the State University of Makassar, Hasanuddin University, and Bosowa University, in pushing us to finalize the research within the limited time frame. Every attempt at any level cannot be satisfactorily completed without all the parties' support and guidance. Last but not least, we would like to give a special thank you to the team, which consists of the Deans of the research team (faculty of sports, faculty of animal science, and faculty of medical). That helped us gather different information and guide us from time to time despite their busy schedules. However, everyone has given different ideas in making this project unique and finish.

REFERENCES

- Ako, A., Abdillah, D. A., Sahidu, A. M., Natsir, M. A., & Arsyad, F. (2019). Heavy metal contents in beef cattle grazing in landfill of Makassar city, Indonesia. Online Journal of Biological Sciences, 19(1), 1–7.
- Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 47(3), 351–361.
- Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881.
- Baloch, S., Kazi, T. G., Baig, J. A., Afridi, H. I., & Arain, M. B. (2020). Occupational exposure of lead and cadmium on adolescent and adult workers of battery recycling and welding workshops: Adverse impact on health. Science of the Total Environment, 720, 137549.
- Bishop, P. A., & Herron, R. L. (2015). Use and misuse of the Likert item responses and other ordinal measures. International Journal of Exercise Science, 8(3), 297–302.
- Bruce, S. L., Martin, P. A., Allinson, G., Keough, M., & Patra, R. W. (2003). A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicology Letters, 137, 23–34.

Volume.1 Issue.6, (March, 2025) Pages 40-46 E-ISSN: 3048-1139

DOI: https://doi.org/10.62872/pmwcfq63 https://nawalaeducation.com/index.php/JHH

- Demirezen, D., & Uruç, K. (2006). Comparative study of trace elements in certain fish, meat and meat products. Meat Science, 32, 215–222.
- Djamba, Y. K., & Neuman, W. L. (2002). Social research methods: Qualitative and quantitative approaches. Boston: Allyn & Bacon.
- Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009
- Karri, V., Schuhmacher, M., & Kumar, V. (2016). Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environmental Toxicology and Pharmacology, 48, 203–213.
- Kasozi, K. I., Namubiru, S., Tayebwa, D. S., Vudriko, P., & Ssempijja, F. (2021). Descriptive analysis of heavy metals content of beef from Eastern Uganda and their safety for public consumption. Frontiers in Nutrition, 8, 1–9. https://doi.org/10.3389/fnut.2021.678850
- Kivinen, S. (2017). Sustainable post-mining land use: Are closed metal mines abandoned or re-used space? Sustainability, 9, 1705. https://doi.org/10.3390/su9101705
- Kubit, O. E., Pluhar, C. J., & De Graff, J. V. (2015). A model for prioritizing sites and reclamation methods at abandoned mines. Environmental Earth Sciences, 73, 7915–7931.
- Lu, X., Wu, X., Wang, Y., Chen, H., Gao, P., & Fu, Y. (2014). Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicology and Environmental Safety, 106, 154–163.
- McHaina, D. M. (2001). Environmental planning considerations for the decommissioning, closure and reclamation of a mine site. International Journal of Surface Mining, Reclamation and Environment, 15, 163–176.
- Pan, H., Lu, X., & Lei, K. (2020). Contamination identification of trace metals in roadway dust of a typical mountainous county in the Three Gorges Reservoir region, China, and its relationships with socio-economic factors. Sustainability, 12, 5624. https://doi.org/10.3390/su12145624
- Pandelova, M., Lopez, W. L., Michalke, B., & Schramm, K. W. (2012). Ca, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn contents in baby foods from the EU market: Comparison of assessed infant intakes with the present safety limits for minerals and trace elements. Journal of Food Composition and Analysis, 20, 120–127.

Volume.1 Issue.6, (March, 2025) Pages 40-46 E-ISSN: 3048-1139

DOI: https://doi.org/10.62872/pmwcfq63 https://nawalaeducation.com/index.php/JHH

- Purnama, A., Zakaria, F., Kusumaningrum, D. H., & Hasan, S. (2014). Selected minerals in meat of cattle grazing in mine revegetation areas and safe consumption for human. Food Science and Quality Management, 30, 18–24.
- Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64, 1782–1806.
- Salnikow, K., & Kasprzak, K. S. (2005). Ascorbate depletion: A critical step in nickel carcinogenesis? Environmental Health Perspectives, 113(5), 577–584.
- Sandlos, J., & Keeling, A. (2016). Aboriginal communities, traditional knowledge, and the environmental legacies of extractive development in Canada. The Extractive Industries and Society, 3, 278–287.
- Saragih, E. W., & Bellairs, S. (2019). Potensi pemanfaatan lahan bekas tambang yang ditanami rumput gamba (Andropogon gayanus) sebagai areal peternakan. Pastura, 8(2), 113–117.
- Sreekanth, T. V. M., Nagajyothi, P. C., Lee, K. D., & Prasad, T. N. V. K. V. (2013). Occurrence, physiological responses and toxicity of nickel in plants. International Journal of Environmental Science and Technology, 10, 1129–1140.
- Sullivan, G. M., & Artino, A. R. (2013). Analyzing and interpreting data from Likert-type scales. Journal of Graduate Medical Education, 5(4), 541–542.
- WHO Europe. (2009). Exposure of children to chemical hazards in food. Hoboken, NJ: John Wiley & Sons, Inc.
- Yakup, N. Y., Sabow, A. B., Saleh, S. J., & Mohammed, G. R. (2018). Assessment of heavy metal in imported red meat available in the markets of Erbil City. Pure and Applied Science, 26(6), 177–182.

