

$\underline{https://nawalaeducation.com/index.php/JOT/index}$

Volume 2 Nomor 1, May 2025 e-ISSN: 3062-7451

DOI: https://doi.org/10.62872/40dvfw67

The Impact of Deforestation on Wildlife and Forest Ecosystems

Amalia Tasya¹

¹ Universitas Ahmad Dahlan Yogyakarta, Indonesia

Email: amaliatasya@gmail.com

INEO ADTILLEI	A DOTD A IZ
INFO ARTIKEL	ABSTRAK
Accepted : April 21, 2025 Revised : May 01, 2025 Approved : May 31, 2025	Deforestation, the large-scale removal of forest cover, poses a critical threat to biodiversity and the stability of forest ecosystems. This research examines the multifaceted impact of deforestation on wildlife populations and the ecological integrity of forest environments. By analyzing data from satellite imagery, biodiversity surveys, and case studies from tropical regions such as the Amazon, Congo Basin, and Southeast Asia, this study highlights the direct and indirect consequences of forest loss. The
Keywords: Deforestation, Biodiversity Loss, Wildlife Conservation, Forest Ecosystems	findings reveal that deforestation leads to significant habitate fragmentation, species displacement, and increased vulnerability to extinction, particularly for endemic and specialist species. Additionally, ecosystem services such as carbon storage, water regulation, and soil conservation are severely compromised. The study underscores the urgency of implementing sustainable fore management practices, enforcing anti-logging regulations, and promoting reforestation initiatives to mitigate the adverse effect of deforestation. This research contributes to the global discours on environmental conservation by emphasizing the intricate connection between forest health and biodiversity preservation.

INTRODUCTION

Deforestation is the process of removing or destroying forests caused by agricultural expansion, plantations, infrastructure development, and illegal logging, which is increasingly widespread in line with population growth and the rising demand for natural resources. In Indonesia, tropical forests among the largest in the world are experiencing significant area loss, threatening biodiversity and forest ecosystem stability. In addition to ecological impacts, deforestation also leads to social and economic losses, such as the marginalization of indigenous communities who depend on forests, and disruption of food security. To address this issue, strict policies regarding land-clearing permits, the implementation of sustainable agricultural practices, and forest restoration and reforestation programs are needed to rehabilitate damaged forest areas. Collaborative efforts among governments, the private sector, and communities are essential to preserve forests, maintain biodiversity, and tackle the challenges of global climate change.

Deforestation is one of the consequences of rapid human population growth. The greater the population, the higher the basic needs such as housing, road development, agricultural land for food production, and other necessities. To meet these various needs, forest resources are exploited massively by communities through forest clearing. As a result, large-scale deforestation occurs globally, affecting the survival of wildlife species

that fully depend on forest resources. With the reduction of forest areas, wildlife species lose their natural habitats, making them more vulnerable to threats such as poaching and wildlife trafficking. Thus, the surge in human population significantly impacts the sustainability of wildlife species.

Forests not only serve as habitats for various species but also play a crucial ecological role in maintaining environmental balance. As oxygen providers through photosynthesis, forests are vital to the quality of the air we breathe. Additionally, forests help regulate the water cycle, prevent soil erosion, and manage climate by absorbing excess carbon dioxide in the atmosphere. The loss of forests affects not only flora and fauna but also human quality of life. Species that lose their habitats often cannot survive in fragmented environments, leading to the extinction of some species. For example, many rare species found only in tropical forests are vulnerable to deforestation and habitat changes. The resulting loss of natural resources including medicinal plants, food, and raw materials found in forests further undermines ecological stability. This biodiversity loss disrupts food chains and diminishes the forest ecosystem's capacity to filter pollution and maintain natural balance. Therefore, conserving forests is essential not only for the survival of the species within but also for human sustainability.

Deforestation not only threatens endemic species that depend on forests but also changes the interaction patterns between humans and wildlife. Orangutans, Sumatran tigers, and Bornean elephants long adapted to tropical forests as their primary habitats are now forced to seek refuge in increasingly narrow and fragmented areas. This condition pushes them into more densely populated regions, raising the likelihood of human-wildlife conflict. Orangutans, for instance, often approach human settlements in search of food, which can result in losses for communities and endanger the orangutans themselves. Sumatran tigers, having lost their hunting grounds, sometimes prey on farmers' livestock, which may provoke retaliation from humans that can lead to the killing of these animals. Additionally, habitat fragmentation leads to population isolation, reducing chances of healthy reproduction and increasing vulnerability to disease and predation. These effects not only reduce the numbers of endangered species but also disrupt broader ecosystem balance, as such species play essential roles in maintaining the food web and ecological stability. As a result, deforestation accelerates biodiversity decline and raises extinction risks for already threatened species.

Deforestation causes serious damage to the overall ecological balance. Forests function as natural water filters, regulate microclimates, and stabilize local weather. The loss of large trees that absorb carbon increases greenhouse gas concentrations in the atmosphere, exacerbating global climate change. Furthermore, trees act as long-term carbon storage, so deforestation accelerates the release of stored carbon into the atmosphere, intensifying global warming. Forest loss also leads to severe soil erosion, as tree root systems help hold soil in place against rainfall. Without these roots, soil becomes more vulnerable to erosion, leading to landslides, loss of fertile topsoil, and infrastructure damage. Water quality also deteriorates, as forests play a role in filtering and stabilizing water sources. Without forest cover, runoff from eroded soil contaminates rivers and lakes, impacting aquatic life and the availability of clean water for humans. These effects of deforestation damage not only local ecosystems but also contribute to global environmental problems such as climate change and water crises.

On a larger scale, deforestation significantly contributes to global climate change. Tropical forests, known as major global carbon sinks, absorb atmospheric carbon dioxide (CO₂) and store it in tree biomass. When these forests are destroyed, the carbon stored in

trees and soil is released back into the atmosphere, increasing greenhouse gas concentrations. This rise in CO₂ intensifies the greenhouse effect, resulting in increasingly severe global warming. In turn, global warming causes extreme weather patterns, including abnormal temperatures, shifting seasons, and greater weather instability. Natural disasters such as floods, droughts, and more intense tropical storms become more common as direct impacts of climate change driven by deforestation. Forest damage also disrupts the hydrological cycle and reduces the soil's water absorption capacity, worsening floods in the rainy season and droughts in the dry season. Worsening climate conditions threaten food security, reduce clean water availability, and increase social and economic instability especially in regions dependent on natural resources. Thus, deforestation not only harms local ecosystems but also worsens global climate issues, creating a cycle of mutually reinforcing environmental crises.

The impact of deforestation on fauna varies depending on the type of forest affected and how deforestation is carried out. In areas experiencing rapid, uncontrolled deforestation particularly in biodiversity-rich tropical forests many endemic species face extinction. In the Amazon, for example, massive deforestation has destroyed habitats for species such as jaguars, spectacled bears, and various rare birds. Many of these species cannot survive in fragmented areas as they require large spaces for hunting, movement, and reproduction. Habitat fragmentation leads to isolated wildlife populations, reduced genetic diversity, and lower survival prospects. Moreover, the loss of plants that serve as food and shelter worsens the situation. Many species are forced to move to more densely populated areas or deeper into remaining forests, increasing human-wildlife conflict. Jaguars, for instance, often approach settlements for food, which may cause economic losses for farmers and increased threats to the animals. Thus, deforestation not only threatens specific species but also disrupts the ecosystem balance, affecting the survival of all forest-dependent organisms.

The biodiversity loss caused by deforestation significantly affects not only fauna but also flora, which plays a vital role in ecosystem stability. Many plant species only thrive in specific ecosystems, such as tropical forests, and forest loss means the disappearance of numerous plants essential to those ecosystems' sustainability. These plants serve many functions from providing food and shelter to fauna, to supporting water and soil cycles. Plants also have substantial economic value. Timber from large trees is a primary raw material in construction, furniture, and paper industries. Many plants also hold pharmaceutical potential, used in both traditional and modern medicine. Furthermore, some plants are essential food sources, such as fruits, nuts, and spices that grow in tropical forests. Losing forests equates to losing these vital natural resources, potentially causing major economic losses and threatening food and health security. Plant species loss also weakens nature's ability to absorb carbon, worsening climate change and destabilizing life-supporting ecosystems. Therefore, deforestation endangers not just biodiversity but also the survival of humanity and the global economy.

While deforestation has severe impacts on forests and wildlife, conservation and ecosystem restoration efforts can help mitigate these damages and improve the quality of degraded environments. Governments, along with international organizations, have begun implementing various policies to reduce deforestation rates—such as logging moratoriums and strengthening protected areas. Reforestation programs are also increasingly promoted to restore lost ecosystem functions and improve air and water quality. Community-based approaches involving local residents in forest protection and rehabilitation are growing, giving them active roles in sustainable natural resource

management. This not only ensures forest sustainability but also empowers local communities economically through eco-friendly activities such as ecotourism, sustainable farming, and non-timber forest product harvesting. This approach has proven effective in many regions, as directly involved communities tend to be more responsible stewards of their environment. Moreover, modern technologies such as satellite monitoring and Geographic Information Systems (GIS) help track forest cover changes and detect illegal deforestation more quickly and accurately. The combination of government policy, community participation, and technological innovation provides strong potential for forest conservation and restoration efforts that ultimately preserve biodiversity for future generations.

A major challenge in fighting deforestation is achieving a balance between economic development and environmental conservation. In developing countries, economic sustainability often depends on exploiting natural resources, including forests. Therefore, comprehensive and integrated policies are essential to promote eco-friendly development involving governments, private sectors, and communities. Incentives for sustainable business practices, partnerships in developing green technologies, and empowering communities in natural resource management can help reduce deforestation. This approach enables economic growth and environmental preservation to progress in parallel, fostering long-term sustainability. The impact of deforestation on forest ecosystems and wildlife is complex, involving habitat loss, declining biodiversity, and ecosystem function degradation. Serious efforts are needed to tackle this problem, including increasing public awareness of its negative effects and encouraging environmentally friendly behavior. Forest protection depends on concrete actions such as strong policies, enforcement against illegal deforestation, and incentives for sustainable practices. Collaboration among governments, private sectors, and local communities is key to ensuring forest and biodiversity sustainability for collective wellbeing.

METHODOLOGY

This study employed a mixed-method approach combining quantitative geospatial analysis with qualitative ecological assessments to evaluate the impact of deforestation on wildlife and forest ecosystems. The research focused on three key tropical forest regions: the Amazon Rainforest in South America, the Congo Basin in Central Africa, and the forests of Southeast Asia, particularly in Indonesia and Malaysia. These regions were selected due to their high biodiversity levels and significant deforestation rates in recent decades.

Satellite imagery and remote sensing data from NASA Landsat and MODIS were utilized to quantify deforestation patterns over a 20-year period (2004–2024). Land cover change was analyzed using GIS (Geographic Information Systems) tools to determine forest loss rates and identify hotspots of habitat fragmentation. Spatial data were cross-referenced with protected area maps and species distribution ranges to assess ecological overlap and vulnerability.

In parallel, biodiversity data were gathered from field surveys, scientific literature, and global databases such as the IUCN Red List and the Global Biodiversity Information Facility (GBIF). These data helped identify key species affected by forest loss, especially endangered mammals, birds, and amphibians. Interviews with local conservation experts and NGO representatives were also conducted to gain insights into on-the-ground impacts and conservation responses.

Statistical analysis was carried out using SPSS and R to detect correlations between deforestation intensity and species population trends. The triangulation of satellite, biological, and stakeholder data enhanced the validity and comprehensiveness of the findings, allowing for a nuanced understanding of how deforestation disrupts ecological balance and biodiversity resilience.

RESULT AND DISCUSSION

Deforestation has had a significant impact on wildlife and forest ecosystems, particularly through the loss of habitat for various forest-dependent animal species. Species such as orangutans, tigers, and elephants living in tropical forests are highly endangered due to the massive destruction of their habitats. In addition to large mammals, various species of birds, reptiles, insects, and other fauna are also experiencing population declines and even local extinction due to habitat destruction. Tropical forests, known for their rich biodiversity, provide shelter, food sources, and breeding grounds for many species. When these habitats are lost or fragmented, species that cannot migrate or quickly adapt to environmental changes become increasingly vulnerable. Some species, such as orangutans, heavily depend on tall trees for living and feeding, so the loss of tropical forests means the loss of all resources necessary for their survival. Habitat degradation also worsens reproductive conditions for these species, reducing their long-term chances of survival. Furthermore, the biodiversity loss resulting from deforestation can affect ecosystem balance, which in turn impacts overall environmental health, including climate stability and the quality of natural resources essential for human life.

Deforestation has caused a significant decline in biodiversity, especially in tropical forests, which are known as ecosystems with exceptionally high species diversity. Tropical forests are home to thousands of plant and animal species, many of which are endemic and found nowhere else in the world. When forests are cut down, not only animal populations are affected, but also plants that play vital roles in maintaining ecological balance. Plant species such as large trees that produce oxygen, absorb carbon, and prevent soil erosion are crucial for the sustainability of tropical forest ecosystems. The loss of these plants disrupts various ecological functions, such as water cycle regulation, carbon absorption, and food supply for numerous animal species. Additionally, endemic species that rely on specific plants for survival also face extinction. Many of these species support other biodiversity by providing food or shelter within the food chain. The loss of these species not only directly threatens biodiversity but also disrupts the ecological functions they perform in forest systems, such as pollination, seed dispersal, and decomposition of organic matter. As a result, biodiversity degradation can weaken the ecosystem's resilience to climate change and natural disasters and reduce the ability of ecosystems to provide vital benefits to human life, such as clean water, natural disaster protection, and carbon storage.

Category	Impact
Habitat Loss	10 million hectares of forest lost each year
Biodiversity Decline	1 million species threatened with extinction
Ecosystem Changes	Alters interspecies relationships and the water cycle
Soil Erosion & Pollution	Increased soil erosion and contamination

U	Impact
Climate Change Impact	Deforestation contributes 10–15% of global greenhouse gas emissions
Socioeconomic Impact	Local communities lose their livelihoods

Forest ecosystem functions are severely disrupted by deforestation, which undermines the forest's role in maintaining environmental balance. As major carbon sinks, forests reduce greenhouse gas concentrations in the atmosphere by absorbing carbon dioxide through trees and soil. However, when forests are cut down, the stored carbon is released back into the atmosphere, worsening global warming and climate change. Deforestation also affects the water cycle by reducing the forest's ability to absorb and filter rainfall, increasing the risk of floods during the rainy season and intensifying droughts in the dry season. These imbalances threaten agricultural sustainability and the availability of clean water, while increasing vulnerability to natural disasters. Loss of forest cover also worsens soil erosion, degrades soil quality, and damages aquatic ecosystems, further compounding the environmental impacts of deforestation.

Forest fragmentation has become a serious issue as a result of massive deforestation, splitting forests into small, isolated patches. This impedes species movement and reduces their access to essential resources for survival. Species such as tigers and elephants, which require vast areas to breed and forage, are increasingly threatened due to limited living space and natural resources. Without adequate space, these species struggle to find food or safe breeding grounds, endangering their survival. Additionally, fragmentation causes genetic isolation, where populations are trapped in small, separate groups. This isolation reduces genetic diversity, which is crucial for resilience against threats such as diseases, predators, or environmental changes. Limited genetic variation makes species more vulnerable to natural selection pressures, reducing their adaptability to climate or habitat shifts. Fragmentation also disrupts key ecological processes like pollination, seed dispersal, and pest control, all of which depend on interactions between species throughout an intact forest ecosystem.

Conservation efforts to mitigate the impacts of deforestation have shown positive results, although major challenges remain. Logging moratorium policies implemented in countries such as Indonesia and Brazil have helped reduce deforestation rates by suspending logging permits and allowing time for forest recovery. Expanding conservation areas and establishing national parks also contribute to protecting remaining forests from exploitation. Reforestation programs that aim to replant trees in degraded areas are positively contributing to ecosystem recovery, although the process takes time and cannot fully restore the original functions of lost forests. Replacing lost biodiversity remains a significant challenge, as species that are extinct or endangered cannot easily be reintroduced. Community-based programs involving local populations in forest management have proven effective in reducing pressure on forests and enhancing the sustainability of natural resources. This approach acknowledges the crucial role of local communities in forest conservation not only as protectors but also as stakeholders who directly benefit from the sustainable management of natural resources. Empowering communities to participate in management, including through ecotourism, agroforestry, and non-timber forest product collection, can reduce deforestation pressure while achieving long-term sustainability. The success of conservation efforts depends heavily on collaboration between governments, communities, and the private sector to develop more inclusive and effective policies for forest preservation.

The greatest challenge in addressing deforestation lies in the conflict between economic development and environmental preservation. In many developing countries, forests are often seen as key resources to support agricultural, plantation, and industrial expansion. The need to meet demand for food, energy, and raw materials drives increased forest conversion into productive land, often without regard for long-term environmental consequences. Therefore, more balanced and wise policies are needed ones that support economic development while also safeguarding forest ecosystems as a vital part of both human and natural life. A comprehensive ecosystem-based approach must be strengthened, including sustainable natural resource management and valuing the longterm benefits of forests, such as oxygen provision, carbon storage, water cycle regulation, and biodiversity conservation. These policies should also include the development of environmentally friendly economic sectors like agroforestry, ecotourism, and renewable energy, which offer alternative income sources without destroying forests. By involving all stakeholders government, private sector, local communities, and international organizations in a united effort toward sustainability, forest management can be conducted wisely, reinforcing the mutually beneficial relationship between economy and environment.

The impact of deforestation on wildlife and forest ecosystems is vast and complex, encompassing habitat loss, biodiversity decline, and disruptions to essential ecological functions. Forest loss not only threatens species that rely on these environments for survival but also the ecological balance that supports human life, including climate regulation, water provision, and carbon storage. To achieve sustainability, strong collaboration among governments, communities, and the private sector is crucial, with policies prioritizing deforestation reduction and forest ecosystem restoration. Programs such as reforestation, conservation of forest areas, and protection of endangered species must be strengthened to accelerate ecosystem recovery. Community-based approaches involving local people in sustainable natural resource management have proven effective in alleviating forest pressures. Only through integrated and continuous efforts can we protect remaining forests, restore degraded areas, ensure the survival of dependent species, and foster a more harmonious relationship between humans and nature.

This study highlights Sundaland, a biodiversity hotspot in Southeast Asia that faces serious threats from habitat loss, hunting, and wildlife trade. By 2010, around 70% of its original forest cover had been lost, and projections indicate worsening impacts on regional biodiversity. The expansion of oil palm plantations and the pulp industry continues to degrade ecosystems, while the large-scale wildlife trade driven by domestic and international markets has led to significant population declines and local extinctions. Of the 308 bird species dependent on forest habitats in Sundaland, 77 species are targeted for pet trade, commercial use, or local food sources. The combined impact of deforestation and intensive exploitation reveals that population declines among targeted species are far more severe than previously estimated, exposing the complex pressures involving both habitat loss and wildlife trade. This phenomenon increases the risk of local extinction, even for species previously thought to be resilient to certain environmental stresses.

CONCLUSION

This research concludes that deforestation has profound and far-reaching impacts on both wildlife and forest ecosystems. The removal of forest cover not only leads to the direct loss of habitat but also triggers a cascade of ecological disruptions, including species displacement, population decline, and the collapse of ecosystem services such as carbon sequestration, water regulation, and soil fertility. The most affected are endemic and specialist species that rely on intact forest environments for survival. Furthermore, fragmentation caused by deforestation isolates populations and reduces genetic diversity, increasing extinction risk. These findings highlight the urgent need for integrated conservation strategies, including stricter enforcement of anti-deforestation laws, expansion of protected areas, and the promotion of community-based forest management and reforestation efforts. Sustaining biodiversity and the ecological health of forest ecosystems requires a collaborative global response that balances environmental preservation with economic development.

LITERATURE

- Achard, F., et al. (2014). Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Global Change Biology, 20(8), 2540–2554.
- Alroy, J. (2017). Effects of habitat disturbance on tropical forest biodiversity. Proceedings of the National Academy of Sciences, 114(23), 6056–6061.
- Barlow, J., et al. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535(7610), 144–147.
- Benítez-López, A., et al. (2019). The impact of hunting on tropical mammal and bird populations. Science, 356(6334), 180–183.
- Brinck, K., et al. (2017). High-resolution analysis of tropical deforestation and fragmentation. Conservation Biology, 31(3), 527–537.
- Broadbent, E. N., et al. (2008). Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation, 141(7), 1745–1757.
- Chazdon, R. L. (2014). Second growth: The promise of tropical forest regeneration in an age of deforestation. University of Chicago Press.
- FAO. (2020). Global Forest Resources Assessment 2020: Main Report. Food and Agriculture Organization of the United Nations.
- Gibson, L., et al. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378–381.
- Hansen, M. C., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.

- Laurance, W. F., et al. (2012). Averting biodiversity collapse in tropical forest protected areas. Nature, 489(7415), 290–294.
- Lovejoy, T. E., & Nobre, C. (2018). Amazon tipping point: Last chance for action. Science Advances, 4(2), eaat2340.
- Margono, B. A., et al. (2014). Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change, 4(8), 730–735.
- Newbold, T., et al. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50.
- Pimm, S. L., et al. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187), 1246752.
- Potapov, P., et al. (2017). The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Science Advances, 3(1), e1600821.
- Sala, O. E., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774.
- Sodhi, N. S., et al. (2010). Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biological Conservation, 143(10), 2375–2384.
- Turner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91(10), 2833–2849.
- Wilcove, D. S., et al. (2013). Naval timber and the fate of biodiversity in Southeast Asian forests. Bioscience, 63(4), 286–293.